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Abstract

Background. Accurate prediction of patient survival
from the time of starting renal replacement therapy
(RRT) is desirable, but previously published predictive
models have low accuracy. We have attempted to
overcome limitations of previous studies by conducting
an ambidirectional inception cohort study in patients
on RRT from centres throughout Europe. A conven-
tional multivariate regression (MVR) model, a self-
learning rule-based model (RBM) and a simple
co-morbidity score [the Charlson score modified for
renal disease (MCS)] were compared.
Methods. In 1996, all 3640 dialysis centres registered
with the ERA-EDTA were invited to identify all
patients on RRT for end-stage renal failure (ESRF)
who died during the 28 days of February 1997 (training
cohort) and all patients who started RRT in the
same period (validation cohort). Fifty-four clinical
and laboratory variables from the time of starting
RRT were collected in both cohorts using a two-page
questionnaire. The data from the training cohort were
given to statisticians at the Amsterdam Academic
Medical Centre to create the MVR model and to
engineers in Strathclyde University to create the RBM.
They were then given the baseline data from patients
in the validation cohort to predict how long each
patient would survive. Follow-up questionnaires were
sent to the centre of each patient in the validation
cohort to determine actual survival.
Results. A total of 2310 patients from 793 centres in
37 countries in the ERA-EDTA area were used to
construct and validate the models. For predicting
1-year survival, the RBM had the highest positive

predictive value (PPV) (84.2%), the MVR model had
the highest negative predictive value (NPV) (47%) and
the RBM had the highest likelihood ratio (1.59). For
predicting 5-year survival, the MCS had the highest
PPV (79.4%), the RBM had the highest NPV (74.3%)
and the MCS had the highest likelihood ratio (7.0).
The proportion of explained variance in survival for
MCS, MVR and RBM was 14.6, 12.9 and 3.95%,
respectively.
Conclusion. Using the ambidirectional inception
cohort design of this ERA-EDTA Registry survey,
we have been able to create and validate two novel
instruments to predict survival in patients starting
RRT and compare them with a simple scoring model.
The models tended to predict 5-year survival with more
accuracy than 1-year survival. Examples of potential
applications include informing clinical decision making
about the likely benefit of starting RRT and listing
for transplantation, adjusting for baseline risk in
comparative studies and identifying specific risk
groups to participate in clinical trials.

Keywords: Charlson score; cohort study;
Cox model; patient survival; renal replacement
therapy; rule-based algorithm

Introduction

The 1- and 5-year survivals of patients starting renal
replacement therapy (RRT) for end-stage renal failure
(ESRF) in the ERA-EDTA Registry 2002 report were
82.1 and 46.9%, respectively [1], but it is recognized
that there is wide inter-individual variability. Many
factors from the time of starting RRT have been shown
to influence survival, including age, race, primary renal
diagnosis, late referral to a nephrologist, patient size
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and co-morbidity. Accurate prediction of patient
survival from the time of starting RRT is desirable
for reasons that include: informing clinical decision
making about the likely benefit of starting RRT;
informing health care economic planning; adjusting
for baseline risk in comparative studies; and identifica-
tion of specific risk groups of patients to participate in
clinical trials.

Predictive models attempt to create a formal
description of complex relationships that allow predic-
tion of future behaviour (e.g. patient survival) that may
also provide insight into the relationships described.
Several published studies have used scoring systems
and multivariate analysis to predict survival from the
time of starting RRT [2–8]. These predictive models
have limitations that include the fact that they are
usually developed in a small number of patients from
one geographical area, low precision of prediction
and lack of validation in other patient populations.
Most studies have used multivariate regression (MVR)
models to predict survival.

We have attempted to overcome these problems by
conducting an ambidirectional inception cohort study
in a large number of patients on RRT from centres
throughout Europe. An ambidirectional inception
cohort study involves the comparison of a retrospective
cohort and a prospective cohort [9]. In this study,
data from the time of starting RRT in patients who
died in February 1997 were used to develop models
to predict survival on RRT. Thus, the models were
developed using a retrospective cohort in which all
of the subjects had reached the end-point of interest,
i.e. death. The models were then validated in patients
who have been followed prospectively since starting
RRT in February 1997 and in whom 5-year outcome
is now known. The unusual design of the study was
intended to address the problems of previous studies
described above.

A conventional MVR model, a self-learning rule-
based model (RBM) and a simple co-morbidity score
were compared. Most clinicians are familiar with the
use of MVR modelling to identify risk factors for a
particular dependent variable (such as patient survival).
The output from a multivariate model can be used
to create a score such as probability of survival for
an individual patient. Self-learning RBMs have been
applied less commonly in medicine [10] but are used in
the financial and engineering domains [11,12]. It has
been suggested that novel predictive models, such as
a self-learning RBM, may have better clinical utility
than an MVR model in medicine [13].

The Charlson score was originally developed to
adjust for age and co-morbidity in the general popula-
tion [14] but has recently been modified to apply
to patients on RRT. It is a simple scoring system
that adds scores for co-morbid conditions to a score
for age [8].

The overall aim of the study, therefore, was to
compare the clinical applicability of an MVR model,
a self-learning RBM and the modified Charlson score
(MCS) in predicting survival in patients starting RRT.

Methods

In 1996, all 3640 dialysis centres registered with the ERA-
EDTA were invited to participate in the study. If they agreed,
they were asked to identify all patients on RRT for ESRF,
who were registered at their centre, who died during the
28 days of February 1997 and all patients who started RRT
in the same period (Figure 1). The patients who died during
the 28 days of February 1997 were used to train models to
predict duration of survival and are referred to as the training
cohort. The patients who started RRT in the same time
period were used to validate the predictions of the models and
are referred to as the validation cohort.

Clinical data from the time of starting RRT were collected
in both cohorts using a two-page questionnaire. The data
variables collected are shown in Table 1. For the co-morbid
data, only the presence or absence of the condition at the
time of starting RRT was sought; no detail about the severity
of the condition was collected. For the training cohort,
duration of survival on RRT was calculated. All data were
checked manually for completeness and consistency by two
of the coordinating nephrologists. Laboratory values were
converted to SI units where appropriate. A series of internal
checks was used to identify errors. If the error could not be
resolved with reference to the paper record, then the patient
or the individual data entry was excluded, whichever was
appropriate, since one of the integral features of the design of
the study was to minimize the effort required by each centre.

The sample size was unlikely to contain enough examples
of each EDTA-ERA diagnosis code to avoid potential
overfitting of the models. For this reason, primary diagnosis
codes were combined into seven previously validated cate-
gories [15]. In addition, duration of care by a nephrologist
before RRT was categorized as <3, 3.01–6, 6.01–11.99 and
>12 months; history of angina or myocardial infarction (MI)
were combined to make ‘ischaemic heart disease’; history of
angina, MI, arterial bypass surgery, symptomatic peripheral
vascular disease, cerebrovascular accident or transient

Fig. 1. Schematic representation of the ambidirectional inception
cohort design. Individual patients and their duration of RRT
before death are represented by horizontal bars. Short vertical bars
indicate time of starting RRT. Data used to train and validate the
predictive models were collected from the time of starting RRT.
In the training data set, the longest surviving patient started RRT
in 1970. In the present analysis, the validation data set was used to
test the ability of the models to predict 5-year survival (i.e. survival
at February 2002).
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Table 1. Comparison of the baseline variables in the training and validation cohorts

Training cohort
(n¼ 1139)

Validation cohort
(n¼ 1171)

P-value

General
Male (%) 57.7 60.2 0.7d

Mean (SD) age started RRT (years) 63.4 (13.5) 60.4 (15.5) <0.0001e

Median (IQR) care by nephrologist before RRT (months) 8.9 (0.5–34.5) 13.2 (1.3–49.3) <0.0001f

‘White European’ or ‘white other’ (%) 93.4 91.5 0.4d

Primary renal diseasea

Glomerulonephritis (%) 11.2 14.9 0.07d

Pyelonephritis (%) 11.2 10.3 0.9d

Autosomal dominant polycystic kidney disease (%) 4.0 5.4 0.5d

Hypertension (%) 9.9 8.7 0.8d

Renal vascular disease (%) 5.5 3.9 0.3d

Diabetic nephropathy (%) 20.5 22.0 0.9d

Miscellaneous (%) 13.6 15.5 0.6d

Investigated and unknown (%) 11.8 13.5 0.7d

Do not know (%) 12.3 5.7 <0.0001d

First RRT
First RRT haemodialysis (%) 84.5 86.8 0.5d

Permanent access in place (%) 70.3 69.2 0.9d

Planned start to RRT (%) 59.4 63.2 0.3d

Co-morbidity
Hypertension (%) 67.8 67.6 1.0d

Ischaemic heart disease (%)g 30.0 21.6 <0.0001d

Vascular disease(%)h 50.7 34.3 <0.0001d

Alcohol liver disease (%) 2.5 2.2 0.9d

Chronic hepatitis (%) 3.9 2.2 0.1d

Hepatic cirrhosis (%) 2.4 1.5 0.5d

Hepatitis B (%) 3.6 2.1 0.2d

Hepatitis C (%) 8.9 4.1 <0.0001d

HIV positive (%) 0.4 0 0.2d

Alcohol abuse (%) 4.7 4.9 1.0d

I.v. drug abuse (%) 0.2 0 0.5d

Oral drug abuse (%) 1.9 0.9 0.2d

Ever smoked (%) 52.4 54.0 0.9d

Diabetes mellitus (%) 30.5 30.8 1.0d

Vasculitis (%) 2.5 1.6 0.5d

Rheumatoid arthritis (%) 1.4 2.5 0.3d

Systemic lupus erythematosus (%) 0.6 0.9 0.9d

Dementia (%) 4.2 1.6 0.003d

Mental retardation (%) 0.4 1.5 0.06d

Chronic psychosis (%) 2.0 1.3 0.6d

Malignancy ever (%) 12.2 8.3 0.02d

Clinical measures
Mean (SD) height (cm) 165.8 (9.0) 167 (8.9) 0.05e

Mean (SD) body mass (kg) 66.1 (14.6) 68.4 (14.5) <0.0001e

Mean (SD) body mass index 24.0 (4.5) 24.5 (4.7) 0.01e

Mean (SD) number of antihypertensive medicines 1.9 (1.2) 2.0 (1.2) 0.05e

Laboratory data
Mean (SD) serum creatinine (mmol/l) 784 (293) 789 (301) 0.7e

Mean (SD) estimated creatinine clearance (ml/min)e 8.2 (5.0) 8.7 (4.2) 0.01e

Mean (SD) serum potassium (mmol/l) 5.0 (1.0) 4.9 (0.9) 0.01e

Mean (SD) serum calcium (mmol/l)c 2.2 (0.42) 2.1 (0.3) <0.0001e

Mean (SD) serum phosphate (mmol/l) 1.9 (0.7) 2.0 (0.7) 0.01e

Mean (SD) calcium�phosphate product 4.1 (1.7) 4.3 (1.4) 0.02e

Mean (SD) serum albumin (g/l) 34.9 (7.1) 36.3 (7.6) <0.0001e

Mean (SD) haemoglobin (g/l) 90 (18) 90 (18) 0.5e

On erythropoietin before RRT (%) 12.5 20.9 <0.0001d

After application of Bonferroni correction for multiple comparisons, a P-value of <0.0009 was regarded as significant for the comparison
of the 58 baseline variables.
aGrouped from ERA-EDTA PRD codes [1].
bCalculated using the Cockcroft and Gault formula [16].
cCorrected for serum albumin concentration.
dt-test of the mean.
ew2 test.
fMann–Whitney test.
gHistory of angina or myocardial infarction.
hHistory of angina, myocardial infarction, cerebrovacular accident, transient ischaemic attack, symptomatic peripheral vascular disease
or arterial bypass operation.
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cerebral ischaemia were combined to make ‘vascular disease’;
history of malignancy, ongoing skin malignancy or ongoing
non-skin malignancy were combined to make ‘malignancy
ever’. Furthermore, some variables were also used to make
calculated fields: ‘body mass index’, ‘estimated creatinine
clearance’ (using the formula of Cockcroft and Gault [16])
and ‘calcium phosphate product’. The two groups creating
the models were given exactly the same data set and the
data variables were explained in detail. The teams creating the
predictive models were advised that the combined or
calculated fields could be used in the model if the variables
used to produce them were omitted to avoid interaction
of independent variables in the model (with the exception
of age, gender, weight and ‘estimated creatinine clearance’).
For example, it was permissible to use history of angina and
history of MI in the same model but it was not permissible
to use history of ischaemic heart disease and history of
MI in the same model as these variables were implicitly
not independent. Only three patients had renal transplant
as mode of first RRT and so ‘mode of first RRT’ was
re-categorized as ‘haemodialysis’ or ‘not haemodialysis’.

Serum cholesterol and parathyroid hormone (PTH)
concentrations were also requested but were available for an
insufficient number of patients to allow meaningful analysis,
and the data have not been used.

For patients starting RRT, we asked participating centres
to report all patients that they considered probably had
ESRF. During follow-up, we were able to identify and
exclude patients who had recovered independent renal
function either before or after the 90th day of RRT.

The ERA-EDTA Registry committee decided that the
centres that had not participated in 1997 should be again
invited to participate in February 1998. The training cohorts
(i.e. patients who died on RRT in February 1997 or February
1998) have been amalgamated.

The data from the training cohort were then given to the
statisticians in Amsterdam to create an MVR model and the
Engineering Department at Strathclyde University, Glasgow
(S.M. andM.M.) to create the self-learning RBM (see below).
Each team was given exactly the same data set with known
duration of survival on RRT and asked to create a model that
predicts patient survival. They were then given the baseline
data from patients in the validation cohort (i.e. patients who
started RRT in February 1997) and asked to predict how
long each patient would survive. The predictions from the
two groups for the validation cohort were returned to the
coordinating nephrologists and held in confidence until 5-year
outcome became available.

During the 6 years after inception, follow-up question-
naires were sent to the centre of each patient in the validation
cohort (i.e. those patients starting RRT in February 1997)
after 3 and 6 months, 1, 2, 3, 4, 5 and 6 years to ask if the
patient had recovered independent renal function, was
alive, had died (and if so date and cause of death), was lost
to follow-up or had moved centre. Patients who recovered
independent renal function were excluded from further
analysis. Patients who had moved centre were traced to that
centre in future follow-up.

Multivariate regression (MVR) model

The time between date of start of dialysis and date of death
in the training data set was modelled with a proportional
hazards regression model. The hazard function and not

the density function was modelled, although there were no
censored observations in this cohort. It was assumed that the
risk of death at t years after start of RRT [denoted by h(t)] was
a function of an unspecified baseline hazard function [h0(t)]
multiplied by a relative risk (RR) function: h(t)¼ h0(t)�RR.
It was assumed that the log of the relative risk was a
linear function of (i) functions of observed covariate values
(X1, X2, . . . , Xk); and (ii) a not-observed random region effect
(zregion): ln(RR)¼ ln(zregion)þ b1� f1(X1)þ b2� f2(X2)þ � � �

þ bk� fk(Xk). The random region effect was meant to
account for the effects of the different health systems,
economic situations and other region-specific variables that
may have affected mortality in patients from the same region
and was not measured by the other covariates. It was assumed
that these random effects (sometimes known as ‘frailty’
parameters) followed a g(�,�) distribution. The relationship
between the log of the RR and each numerical covariate
X[f(X)] was assessed by inspection of the marginal residuals;
a linear relationship [f(X)¼X] was used if possible, and,
if needed, a spline function (SAS-macro %PSPLINET) [17]
was used to estimate the non-linear effect of each covariate
on mortality risk. Interactions between covariates were also
inspected, and violation of the assumed proportionality of
each covariate was assessed by evaluating interactions
between covariates and time. The cumulative baseline
hazard function was modelled parametrically with a poly-
nomial function of time t: H0ðtÞ ¼

R
h0ðuÞdu ¼ aþ b� tþ

c� t2 þ d� t3 þ � � � . For the prediction of the survival of
the patients in the prospective cohort, the 1- and 5-year
survival probabilities S(1) and S(5) were calculated as S(t)¼
exp[�H0(t)� exp[g� ln(RR)], where g is a shrinkage factor.
This factor was derived from the results on the retrospective
cohort, and was meant to guard against over-optimistic
predictions.

Self-learning rule-based model (RBM)

The C5.0 rule induction algorithm attempts to derive if–then
prediction rules from a training data set, which can
subsequently be used to classify ‘unseen’ data [18]. Rule sets
and decision trees are induced by segmenting data using
partitioning lines. The self-learning RBM was created using
the C5.0 rule induction facilities within the Clementine
software package, developed by SPSS. The rule sets were
then exported and integrated within Strathclyde University’s
bespoke software. The C5.0 rule induction software auto-
matically identifies relationships between the variables within
complex data sets and creates re-usable rules. In the present
application, the technique predicts outcome in groups and
so the nephrologists identified survival time periods of <3,
3.01–12, 12.01–24, 24.01–59.99 and �60 months as being of
clinical value.

Modified Charlson score (MCS)

MCS was calculated as described recently by Hemmelgarn
et al. [8] (Table 2) with adjustment for age class as in the
original description [14]. The co-morbidity score is added to
the age score (one additional point for each decade beginning
at 40 years). ‘Disseminated malignancy’ was not specified
in our questionnaire and so the only deviation we made
from the MCS described in the paper by Hemmelgarn et al.
was to award 5 points for history of neoplasia rather
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than the 10 points for disseminated malignancy. Sensitivity
analysis demonstrated that this allocation had no influence on
the subsequent results presented (data not shown).

Statistical comparisons

The baseline data in the training and validation cohorts were
compared by t-test of the mean, Mann–Whitney test or w2 test
where appropriate. After application of Bonferroni correction
for multiple comparisons, a P-value of <0.001 was regarded
as significant for the comparison of the 50 baseline variables.

Patient survival in the training and validation cohorts was
compared by log-rank test of a Kaplan–Meier plot.

Survival predictions of the MVR model for individual
patients were brought together in the same pre-defined groups
as the RBM (<3, 3.01–12, 12.01–24, 24.01–59.99 and �60
months). The MCSs were combined to achieve the same five
predicted groups based on the MCSs in the training cohort.

The positive predictive values (PPVs) and negative
predictive values (NPVs) for 1- and 5-year survival in the
validation cohort were analysed to compare the utility of the
models for individual patient prediction. The likelihood ratios
for predicting 1- and 5-year survival were calculated, using
the 1- and 5-year survival from the training cohort as the pre-
test probability. The ability of the models to identify groups
of patients with similar risk was compared by graphing the
median and interquartile range (IQR) of the actual survival
of groups of validation cohort patients predicted to survive
<3, 3.01–12, 12.01–24, 24.01–59.99 and �60 months.

Finally, the proportion of explained variation (PEV) for
each model (i.e. how much of the total variation in survival
can be explained by each model) was compared using the
method of Heinze and Schemper [19].

Statistical comparative tests were performed using SPSS
v10.0 (SPSS Inc., 2001) and Microsoft Excel 2002 (Microsoft
Corporation, 2001).

Results

Of the 3640 dialysis centres registered with the ERA-
EDTA in 1997, 1220 (33.5%) centres from 37 countries

agreed to participate in the study and either contributed
patient data or indicated that no patients started RRT
or died on RRT during the inception period.

A total of 1217 patient data forms were returned for
patients who died during the inception period (training
cohort). Of these, 66 forms contained invalid data
(such as date of death outside the inception period,
date of starting RRT apparently before birth, etc.), or
had important missing data such as date of birth or sex.
Only 12 patients were <16 years old and a decision
was made to omit these from the models and apply the
models only to adults. This left 1139 patients with
sufficient data to be used to construct the predictive
models. This number includes 296 patients who started
RRT in February 1998 as a result of the decision by
the ERA-EDTA Registry committee that the centres
that had not participated in 1997 should be again
invited to participate in February 1998.

A total of 1236 patient data forms were returned
for patients who had started RRT in February 1997
(validation cohort). Of these, four forms contained
invalid data or had important missing data. Eighteen
patients were <16 years old and were omitted. Forty-
three patients recovered renal function during the
follow-up period and are not included in the analysis.
This left 1171 patients with sufficient data to be used
to validate the models.

The 2310 adult patients described above, who were
used to construct and validate the models, were derived
from 793 centres from 37 countries in the ERA-EDTA
area. The median number of patients contributed per
centre was two (range 1–15) and the median number of
centres per country was 12.5 with a range of 1 (Ireland,
Cyprus and Malta) to 117 (Italy). The median number
of patients per country was 31 with a range of 1
(Cyprus) to 338 (Italy) (Figure 2). The geographical
distribution of patients in the training cohort was
similar to that of the validation cohort.

Baseline data

The baseline data are shown in Table 1, with a com-
parison between the training and validation cohorts.
At the time of starting RRT, patients in the validation
cohort were significantly younger, had been cared for
by a nephrologist for longer, were less likely to have
ischaemic heart disease, vascular disease or hepatitis C
infection, had a higher body mass, a lower serum
calcium, a higher serum albumin, and were more likely
to have been on erythropoietin before starting RRT.

Patient survival

By definition, survival data were available for 100% of
the training cohort. For the validation cohort, 1-year
survival status was available for 1021 of the 1171
patients (87.2%) and 5-year survival status for 851
patients (72.7%). In the subsequent analysis of model
predictions, only patients with known survival status
are included.

Table 2. Modified Charlson score (MCS) used in this study
(adapted from Hemmelgarn et al. [8])

Co-morbidity variable ESRD co-morbidity weight

Myocardial infarction 2
Congestive heart failure 2
Peripheral vascular disease 1
Cerebral vascular disease 2
Dementia 1
Chronic lung disease 1
Rheumatological 1
Peptic ulcer disease 1
Diabetes without complications 2
Diabetes with complications 1
Neoplasia 5
Moderate/severe liver disease 2
Leukaemia 2
Lymphoma 5

The score for co-morbidity is added to a score for age (one
additional point for each decade beginning at 40 years).

Predicting survival on renal replacement therapy 949
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Kaplan–Meier survival curves for the two cohorts
are shown in Figure 3. The survival of patients in the
validation cohort was significantly longer than in the
training cohort (median survival 46.4 vs 26.0 months;
P<0.0001 log rank test). The 1- and 5-year actuarial
survivals in the validation cohort were 77.5 and 41.7%,
respectively, compared with 69.2 and 26.5%, respec-
tively, in the training cohort.

MVR model

By means of non-linear curve fitting, it was found
that the baseline survivor function was very well
described by

S0ðtÞ ¼ e�½0:006þð3:88tþ35:37t2Þ=ð1þ124:7tÞ�

where S0(t) is the baseline survival (the survival
proportion when all covariates are equal to zero) at a
given time t since start of RRT.

The variables included in the final model and their
influences on survival are shown in Table 3. Twenty-
four independent variables were included and their
influences on patient survival are consistent with
previously published multivariate analyses with the
exceptions that history of peripheral vascular disease
and hepatitis C infection were both independent
predictors of longer survival. The final predictive
model based on the results in Table 3 with the

incorporation of the frailty factor and theoretical
shrinkage factor was:

SðtjPI;ZEÞ ¼ e�½0:006þð3:88tþ35:37t2Þ=ð1þ124:7tÞ�ZEe0:93ðPI�2:63Þ

where ZE is the posterior expected value of the
countries’ frailty estimated on the available data and
PI is the prognostic index for the individual patient.

Fig. 2. Number of subjects contributed per country to either the training data set (patients on RRT who died in February 1997 or
February 1998) or the validation data set (patients who started RRT in February 1997). For clarity, the figure does not include the four
patients contributed from Luxembourg, the nine patients contributed from Malta and the one patient contributed from Cyprus. Countries
affiliated to the ERA-EDTA Registry in 2004 are shown in light grey.

Fig. 3. Five-year Kaplan–Meier survival curves for the two
cohorts. Numbers of patients remaining for analysis in each
group (n) at each year of follow-up are shown above the x-axis.
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RBM

After selection of different rules, the final rule was>450
lines long and is, therefore, not presented here in full.
To illustrate the principle of the rule structure, however,
Figure 4 provides a visual representation of one of
the rule sets generated through the analysis. In that
example, the starting point is age at first RRT,
indicated in green. From the database, if this was
unknown, then the ensuing survival rate was <3
months. If the branch for ‘age at first RRT’ >75.53
years is considered, then the next variable for classifi-
cation was PTH. Depending on this measure, the
subsequent variables of interest vary until a classifi-
cation is achieved. The complete rule had >450 clauses
within it. When applied to the validation cohort, the
rule was incapable of categorizing 11 patients based on
their entry data.

MCS

The range of Charlson scores was 0–15 with the
median score being 4 (IQR 3–6). The MCSs in the
training cohort were used to identify the previously
defined groups as follows: MCS 9–15 predicts survival
<3 months (n¼ 93) in the validation cohort; MCS
6–8 predicts survival 3.01–12 months (n¼ 237); MCS
4–5 predicts survival 12.01–24 months (n¼ 251);
MCS 2–3 predicts survival 24.01–59.99 months
(n¼ 173); and MCS 0–1 predicts survival �60 months
(n¼ 97).

Comparing the three predictive models

For predicting 1-year survival, the RBM had the
highest PPV (84.2%), the MVR model had the highest
NPV (47%) and the RBM had the highest likelihood
ratio (1.59) (Table 4). For predicting 5-year survival,
the MCS had the highest PPV (79.4%), the RBM
had the highest NPV (74.3%) and the MCS had the
highest likelihood ratio (7.0). In other words, 79.4% of
patients with aMCS of 0 or 1 survived>5 years; 74.3%
of patients predicted by the RBM to have a survival
of <5 years died within 5 years; and patients who
survived >5 years were seven times more likely to have
anMCS of 0 or 1 than patients who died within 5 years.

Figure 5 shows the comparison of the ability of the
three models to discriminate groups of patients with
similar risk. For the MVR model and the MCS, there
is a close correlation between predicted survival and
actual median survival in these pre-defined groups.
The IQRs are narrower in the MVR model, consistent
with better discriminatory power. The RBM shows
a close correlation between predicted survival and
actual median survival for the groups 3–12, 12–24,
24–60 and �60 months, but the predicted survival
<3 months group’s median survival was 26.1 months
(IQR 7.8–54.3). The MVR model and MCS both
predicted �60 month survival with precision (median
survival 60 months; IQR 60–60). It should be empha-
sized that the maximum possible survival in the
validation cohort at the stage of the present analysis
was 60 months.

Table 3. Cox proportional hazards model fitted to 1139 RRT patients

Factor No. of patients Regression coefficient ln(RR) RR 95% CI

Age at start of RRT (per year) – 0.05 1.05 1.04–1.05
Asian origin 26 0.71 2.02 1.33–3.08
Smoked never 311 �0.16 0.85 0.74–0.98
First RRT planned (yes) 740 �0.56 0.57 0.50–0.65
Serum creatinine (per 100 mmol/l) – �0.04 0.96 0.94–0.98
Primary renal disease

Glomerulonephritis 127 0.03 1.03 0.80–1.34
Polycystic kidneys 45 �0.31 0.73 0.51–1.04
Hypertension 113 0.16 1.17 0.89–1.53
Renal vascular disease 63 0.09 1.09 0.79–1.51
Diabetes 233 0.64 1.90 1.50–2.41
Miscellaneous 155 0.47 1.60 1.25–2.06
Investigated and unknown 134 0.11 1.12 0.87–1.45
Unknown or not recorded 140 0.31 1.36 1.06–1.76

Co-morbidities
Peripheral vascular disease 257 �0.18 0.83 0.71–0.98
Myocardial infarction 166 0.29 1.33 1.12–1.59
High blood pressure 771 0.17 1.18 1.03–1.35
Cerebrovascular accident 161 0.22 1.25 1.05–1.50
Hepatitis C 101 �0.42 0.66 0.53–0.82
Systemic lupus erythematosus 7 0.83 2.30 1.03–5.17
Mental retardation 4 1.75 5.77 1.90–17.55
Down syndrome 3 1.48 4.38 1.28–15.02
Malignancy ever 139 0.37 1.44 1.20–1.74
Alcohol liver disease 29 0.74 2.10 1.43–3.09
Patient on erythropoeitin (yes) 130 0.3 1.35 1.11–1.65

RR, relative risk of death. An RR of >1.0 implies the variable is independently associated with a greater hazard of death. An RR of <1.0
implies that the variable is associated with a reduced hazard of death. If the 95% confidence intervals do not cross zero, then the
association is statistically significant at the P<0.05 level.
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The observation in Figure 5 is consistent with the
calculated PEV using the method of Heinze and
Schemper. This showed that the performance of the
MVR model and the MCS was similar, with a PEV of
14.6 and 12.9%, respectively, while the RBM only
explained 3.95% of the total variation in survival.

Discussion

There have been many previous attempts to predict
survival in patients starting RRT [2–8]. This study was
designed in an attempt to improve on previous
predictive models that were limited by the fact that

Fig. 4. (a) Representation of one branch of the rule-based model after training. Prediction of survival was made by applying the rule to
the data of a patient in the validation data set. To illustrate the complexity of the model, the computer-generated text associated with this
branch is shown in (b); the complete model comprises 450 clauses.
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they were usually developed in a small number of
patients from one geographical area, had low precision
of prediction, did not include many variables that
have subsequently been shown to influence survival
and lacked validation in other patient populations. The
large number of patients from many countries makes
the results generalizable.

We also wanted to compare multiple regression
modelling, the self-learning rule-based algorithm and a
simple bedside scoring system. At the time the study
was designed, it was being suggested that novel artificial
intelligence techniques such as a self-learning rule-
based algorithm may be better at predicting outcome in
medicine because regression modelling was perceived
to make assumptions about the input data and
could not resolve relationships between independent
and dependent variables that were not linear [20,21].
On the other hand, it is acknowledged that novel
self-learning techniques can have limited generaliz-
ability due to over-fitting to the training data set.
Furthermore, refinements can be made to the MVR

technique such as testing for interactions, SPLINE
functions and frailty factors, that were applied in the
present study, that can overcome many of these
perceived limitations. It was important to compare
these sophisticated techniques with an established
simple scoring system and we selected the Charlson
score because it has been validated in renal patients, has
a wide range of possible scores and has also recently
been modified for patients on RRT [8].

The ambidirectional inception cohort study design
is unusual. The design takes advantage of the fact
that once a patient starts RRT they remain under the
care of nephrologists for the remainder of their lives,
with the exception of the few patients who recover renal
function unexpectedly. It meant that, unlike previous
studies, all of the subjects in the training cohort had
reached the end-point of interest, and a prospectively
followed validation cohort was included within the
same study. We anticipated that, because the inception
period was only 1 month, each centre would only be
required to provide information on a small number of

Fig. 5. Median survival and interquartile range (to a maximum of 60 months) of patients starting RRT in February 1997 (validation
cohort) according to predictions of the rule-based model (RBM), the multivariate regression (MVR) model and the modified Charlson
score (MCS). Groups 1, 2, 3, 4 and 5 denote patients predicted by the RBM and MVR to survive <3, 3.01–12, 12.01–24, 24.01–59.99 and
�60 months, respectively, and an MCS of 9–15, 6–8, 4–5, 2–3 and 0–1 (inclusive), respectively.

Table 4. Comparison of model performance in predicting individual 1- and 5-year survival

Pre-test probability (%) Predicting >1 year survival (n¼ 1021) Predicting >5 year survival (n¼ 851)

69.2%a 26.5%a

MVR RBM MCSb MVR RBM MCSc

PPV (%) 80.4 84.2 78.7 77.0 63.1 79.4
NPV (%) 47.0 32.6 40.8 74.2 74.3 70.2
Likelihood ratio 1.24 1.59 1.11 6.1 3.1 7.0

MVR, multivariate regression model; RBM, rule-based algorithm; MCS, modified Charlson score; PPV, positive predictive value;
NPV, negative predictive value.
aPre-test probability derived from the overall survival of the training cohort.
bMCS of <9 used as cut-off to predict survival >1 year.
cMCS of <2 used as cut-off to predict survival >5 years.
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patients, and the case records of patients who had died
while on RRT (training cohort), and patients who had
started RRT (validation cohort), would be easily
available to the participating nephrologists at the time
of sending the questionnaires.

We anticipated that the two cohorts would be
comparable, as the majority of patients in the training
cohort would have started RRT within the previous
5 years when practices were similar. We were surprised
to find that the patients in the validation cohort were
significantly younger (mean 60.4 vs 63.4 years), had
been cared for by a nephrologist for longer and were
less likely to have ischaemic heart disease or vascular
disease; though not surprised that they were more
likely to have been on erythropoietin before starting
RRT. This is not consistent with data from all renal
registries that show that with time, the age and
co-morbidity of patients starting RRT has increased.
The baseline data and 5-year survival of the validation
cohort are consistent with the EDTA-ERA Registry
report for the same period [22]. There may be several
reasons why patients with a high burden of
co-morbidity, and hence a shorter survival, are over-
represented in the training cohort. First, most of the
patients in the training cohort started RRT during
the period of rapidly increasing acceptance rates in
Europe prior to the inception period of the study [23].
This increased acceptance rate in Europe was largely
due to an increased acceptance of older patients with
multiple co-morbidities. Since these were the same
patients who were likely to have short survival, they are
likely to be over-represented in an inception cohort
of patients dying in February 1997 and February 1998
compared with a cohort of patients starting RRT in
February 1997. Secondly, it is likely that some long
survivors (who were young and had low co-morbidity
when they started RRT), who happened to die in
February 1997, are missing from the training cohort
because nephrologists may not have become aware
of their death until after the survey was carried out.
Thirdly, reported co-morbidity may be higher because
of assumptions made about co-morbidity at the time
of starting RRT based on events that happened after
starting RRT. Finally, the significantly better survival
in the validation cohort may be partly explained by
changes in practice in recent years (such as more
attention to anaemia before RRT is required). Despite
these differences in the training and validation cohorts,
the underlying biology is likely to be the same; even
if the proportions of patients with particular attributes
is not the same in both groups, the risk associated
with these attributes should still be contained within the
data sets and the comparison of the models therefore
remains valid.

Comparing predictive models is difficult. The output
of the MVR model is continuous, whereas the outputs
of the RBM and MCS are categorical. We decided to
compare the ability to predict clinically useful aspects
of survival: 1- and 5-year survival. The PPV and NPV
are useful statistics to quote when applying the results
of the models’ predictions to individual patients.

The PPV tells the user the probability that a patient
predicted by the test to survive beyond the selected time
period will actually survive beyond that time period.
The likelihood ratio informs about the utility of the
test in the context of the pre-test survival probability.
The PPVs, NPVs and likelihood ratios for predicting
individual survival were broadly similar for all three
predictive models but generally better for the MVR
model and MCS. All three models were better at
predicting 5-year than 1-year survival. The predictions
of 5-year survival could be useful in the clinic setting;
for example a patient with an MCS of 0 or 1 can be
informed that, although the overall 5-year survival
for patients starting RRT is 35.5%, the PPV of the
MCS increases their probability of 5-year survival to
79.4% (Table 3). This may be used for example
to support decisions regarding transplantation: in the
UK, it is stipulated that expected survival of <5 years
is a contra-indication to listing for cadaveric renal
transplantation [24]. The utility of the MCS in
predicting 5-year survival is reflected by the likelihood
ratio of 7.0; patients who survived >5 years were
seven times more likely to have an MCS of 0 or 1 than
patients who died within 5 years. It has been arbitrarily
suggested that a likelihood ratio of 2.0 is the minimum
for utility in clinical practice [25].

All three models can identify groups of patients with
different survival risk (Figure 5). All three models were
able to identify a group of patients with predicted
survival �60 months with sufficient precision to be
clinically useful, although the precision of the RBM
was less than that of the other two models.

The ability to identify a group of patients with
low survival might be of more value. The MVR model
was able to identify a group of patients with very low
(<3 months) predicted survival with useful accuracy
and precision, but the prediction applied to only seven
patients (0.82%) in the validation cohort. Combining
the groups predicted by the MVR model to survive
<3 months or 3.01–12 months into one group predicted
to survive<12 months provides 121 patients (14.2%) in
the validation cohort with actual median survival
of 10.7 months (IQR 3–26.7). Again this would be
useful when discussing transplant listing with individual
patients. Furthermore, selecting patients in this way
for entry into clinical trials of interventions to reduce
mortality on RRT would greatly reduce the sample
size required to achieve adequate statistical power.
Neither the MCS nor the RBM were able to identify
a similar sized group of patients with such low survival
with equal precision.

There are other considerations when comparing
these predictive models. The MCS is easy to apply
and could be calculated quickly on paper. It is also
easy to explain to a patient. The MVR model and
RBM predictions require computerized calculation
although with increasing use of electronic patient
records there is no reason why this could not be done
in the clinic setting. The clinician needs to consider how
representative the patients in the study are compared
with their own patients. In this respect, our study is
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likely to be more representative of European dialysis
patients than previous studies, but there is inevitably
a bias toward the study being more representative
of the countries and centres that contributed the most
patients.

There are obvious reasons why the models cannot
predict outcome with 100% accuracy. The first is that
death is not always a direct result of the illness of
interest, e.g. death in a road traffic accident. The models
clearly identify co-morbid conditions as important
predictors of survival, and this is consistent with
all previous studies. This study and most others are
limited by the fact that a co-morbid condition such as
ischaemic heart disease may be present but not
clinically evident and by the fact that severity of
co-morbid conditions is not included. In a recent
study by van Manen et al., however, adding severity
of co-morbid conditions did not seem to increase the
predictive power of commonly used co-morbidity
indices [6]. Some factors that are likely to have a
major influence on survival were included such as
intravenous drug abuse but, because of the low
prevalence in the training cohort, they were not
identified by the models as of major importance.
Finally, it is well known that clinical factors after
the start of RRT, such as adequacy of dialysis [26] and
renal transplant [27], influence mortality.

Conclusion

Using the ambidirectional inception cohort design of
this ERA-EDTA Registry survey, we have been able
to create and validate two novel instruments to predict
survival in patients starting RRT. The Cox regression
hazards model has become the standard for examining
the relationship between independent variables and
survival, and our data demonstrate the continued
value. We have also validated the recently described
modification of the generic Charlson score for patients
on RRT.

We have shown that these models are good at
predicting long-term survival but not good at predict-
ing short-term survival for individual patients. The
MVR model and the MCS could, however, be used to
select a group of patients at high risk of short survival.
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