Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

A multi-criteria performance study of an integrated demand/supply energy system for low and zero carbon technologies within domestic building design

Clarke, Joseph Andrew and Johnstone, Cameron and Hong, Jun and Kim, Jae Min and Strachan, Paul and Hwang, I. and Li, Hongjun (2007) A multi-criteria performance study of an integrated demand/supply energy system for low and zero carbon technologies within domestic building design. In: 10th IBPSA Conference on Building Simulation 2007, 2007-09-03 - 2007-09-06.

[img]
Preview
PDF
p678vfinal.pdf - Accepted Author Manuscript

Download (930kB) | Preview

Abstract

When low carbon and renewable energy (RE) systems are adopted in a building, matching the outputs from RE systems (e.g. photovoltaic, solar collectors, small scale wind turbines and heat pumps) to demand has to be taken into account to fully realise the potential of the hybrid energy system. Considering the varying demand profiles due to different building design options (e.g. orientation, construction types etc), it is necessary to evaluate key technology elements in an integrated context and establish appropriate strategies for simultaneously meeting heating and electricity loads as well as matching demand and supply. This paper presents a new approach to evaluate the interactive effects of low carbon technologies and demand reduction measures in the early design stage of a new building. A case study of a sustainable domestic building project (PLUS 50), was implemented on the basis of the proposed design approach.