Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.


Web crippling behaviour of thin-walled flexural members - an experimental investigation

Heiyantuduwa, M.A. and Macdonald, Martin and Rhodes, James (2007) Web crippling behaviour of thin-walled flexural members - an experimental investigation. In: 6th International Conference on Steel and Aluminium Structures, ICSAS 07, 2007-07-18.

Full text not available in this repository. Request a copy from the Strathclyde author


This paper presents the results of an investigation into web crippling behaviour—conducted on cold-formed thin-walled steel lipped channel beams subjected to Interior-One-Flange (IOF), Interior-Two-Flange (ITF), End-One-Flange (EOF) and End-Two-Flange (ETF) loading conditions as defined by the American Iron and Steel Institute (AISI). An experimental program was designed to obtain the load-deformation characteristics of beam members with varying cross-sectional and loading parameters under the three web crippling loading conditions. The results obtained from the experiments comprised of the ultimate web crippling strength values and displacements of the thirty-six beam specimens tested. Nonlinear finite element models were developed to simulate web crippling failure of the two loading conditions considered in the experimental program. Also, a combination of elastic analysis with a plastic mechanism approach was employed to investigate the load-deformation characteristics of lipped channel members subjected to the IOF loading condition. The comparison of experimental, finite element and plastic mechanism approach results revealed that the nonlinear finite element models were best capable of closely simulating the web crippling failure behaviour observed in the experiments for all ranges of displacement. Web crippling strength predicted from the Eurocode 3, Part 1.3 [1], and the Polish PN-B-0327 [2] design specifications were also compared with the experimental results and the comparisons indicated considerable underestimations for the range of specimens under EOF and ETF loading conditions.