Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Quantitative assessment of surface-enhanced resonance Raman scattering for the analysis of dyes on colloidal silver

Jones, J.C. and McLaughlin, C. and Littlejohn, D. and Sadler, D.A. and Graham, D. and Smith, W.E. (1999) Quantitative assessment of surface-enhanced resonance Raman scattering for the analysis of dyes on colloidal silver. Analytical Chemistry, 71 (3). pp. 596-601. ISSN 0003-2700

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Factors that affect quantitative analysis by surface-enhanced resonance Raman scattering (SERRS) have been investigated using azobenzotriazol and reactive dyes. Preaggregation of the silver colloid was the most effective method to obtain repeatable and reproducible scattering. Aggregation by poly(L-lysine) or spermine provided better precision than aggregation by sodium chloride or nitric acid. Repeatable quantitative analysis was achieved with the azobenzotriazol dyes. A linear calibration graph was obtained over different concentration ranges below 10(-8) M, depending on the nature of the colloid. Calculations estimate that 10(-8) M is the concentration at which monolayer coverage of the dye on the silver colloid is achieved. Above 10(-8) M, there was only a minor increase in the scattering intensity from the azobenzotriazol dyes. In contrast, the reactive dyes did not give a response proportional to concentration over the range studied. The different responses obtained for the two types of dye are believed to be caused by differences in the nature of the interaction of the molecules with the silver surface. The conclusion reached is that control of the colloid preparation, aggregation process, and surface chemistry are essential for successful quantitative analysis of dyes on colloidal silver by SERRS.