Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Quantitative assessment of surface-enhanced resonance Raman scattering for the analysis of dyes on colloidal silver

Jones, J.C. and McLaughlin, C. and Littlejohn, D. and Sadler, D.A. and Graham, D. and Smith, W.E. (1999) Quantitative assessment of surface-enhanced resonance Raman scattering for the analysis of dyes on colloidal silver. Analytical Chemistry, 71 (3). pp. 596-601. ISSN 0003-2700

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Factors that affect quantitative analysis by surface-enhanced resonance Raman scattering (SERRS) have been investigated using azobenzotriazol and reactive dyes. Preaggregation of the silver colloid was the most effective method to obtain repeatable and reproducible scattering. Aggregation by poly(L-lysine) or spermine provided better precision than aggregation by sodium chloride or nitric acid. Repeatable quantitative analysis was achieved with the azobenzotriazol dyes. A linear calibration graph was obtained over different concentration ranges below 10(-8) M, depending on the nature of the colloid. Calculations estimate that 10(-8) M is the concentration at which monolayer coverage of the dye on the silver colloid is achieved. Above 10(-8) M, there was only a minor increase in the scattering intensity from the azobenzotriazol dyes. In contrast, the reactive dyes did not give a response proportional to concentration over the range studied. The different responses obtained for the two types of dye are believed to be caused by differences in the nature of the interaction of the molecules with the silver surface. The conclusion reached is that control of the colloid preparation, aggregation process, and surface chemistry are essential for successful quantitative analysis of dyes on colloidal silver by SERRS.