Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

A sigmoidal model for superplastic deformation

Pan, W. and Krohn, K. and Leen, S.B. and Hyde, T.H. and Walloe, S. (2005) A sigmoidal model for superplastic deformation. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 219 (3). pp. 149-162. ISSN 1464-4207

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A new phenomenological model, designed to capture the sigmoidal nature of stress dependency on strain rate for superplastic deformation, is presented. The model is developed for the Ti-6Al-2Sn-4Zr-2Mo alloy using data obtained under controlled strain-rate tensile tests spanning a range of strain rates and temperatures, from 930 to 980 °C. The sigmoidal model performance is compared with that of a more conventional double-power law, strain, and strain-rate hardening model using time-dependent finite element and theoretical analyses. The primary intended application of the sigmoidal model is for more accurate simulation of the effects of strain-rate variation within test specimens and sheet during superplastic deformation. Analysis of this variation within two designs of tensile test specimens is presented to illustrate this aspect.