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Composite piezoelectric transducers have
many advantages but the periodic pillar archi-
tecture also gives rise to unwanted lateral modes
which interfere with the piston like motion of
the main thickness mode. In this paper we use
a three dimensional plane wave expansion model
(PWE) of these transducers, which incorporates
viscoelastic losses, to examine the dispersive be-
haviour of a 2-2 composite transducer with high
shear attenuation in the passive phase. The
identification of the modes is aided by examining
profiles of the displacements, electrical potential
and Poynting vector. The model shows that the
use of a high shear attenuation filler material im-
proves the transmission bandwidth of the device
by damping out unwanted lateral modes.

1 Introduction

Piezoelectric composite transducers are in-
creasingly becoming the design of choice in
biomedical, sonar and nondestructive testing ap-
plications [1]. The most frequently used designs
are made by dicing the ceramic into a series of
pillars and then filling the void with a passive
polymer phase (see Figure 1) . For a 2-2 com-
posite the ceramic is cut longitudinally in one di-
rection so that there is connectivity in two direc-
tions for both the ceramic and polymer. How-
ever, one of the problems with this architecture
is the presence of surface waves, which are gen-
erated between the adjacent pillars (inter-pillar
modes) or within the pillars (intra-pillar modes),
interfering with the piston like behaviour of the
main thickness mode. Extensive experimental
observations have highlighted the intricate de-
pendency between the geometry of the design,
the material properties and the key operational
characteristics of the device. It has been sug-
gested that a passive material with a low trans-
verse coupling would enhance the transducer’s
efficiency [2], [3].

We have recently extended the 3-dimensional
plane wave expansion model (PWE) derived by
Wilm et al [4] to incorporate frequency depen-
dent, viscoelastic losses [5]. We will use this
model to examine the dispersive behaviour of a
2-2 composite transducer and investigate the ef-
fects of introducing high shear attenuation into
the passive phase. The aim is to increase the fre-
quency band gap between the thickness mode
and other parasitic waves to obtain a higher
transmission bandwidth. The identification of
the modes is aided by examining profiles of the
displacements, electrical potential and Poynt-
ing vector. As mentioned above finite element
modelling (FEM)[1] can lose important informa-
tion on low amplitude modes and high frequency
modes but since the PWE method operates in
the frequency domain no such restrictions apply.

Section 2 by provides a brief outline of the
plane wave expansion method following the
derivation of Wilm et al [4] . In Section 3 a com-
posite transducer with a high shear loss passive
phase is analysed. Plots of the electrical conduc-
tance and a modal analysis using displacement
and Poynting vector profiles are used to discuss
the operating characteristics of this device.

2 Formulation of the method

2.1 The geometry

The model is configured for periodic 1-3 com-
posites with thickness in the x3 direction. We
use the periodicity of the structure to expand
the material constants, M(r) say, as Fourier se-
ries where M represents either the density ρ,
the elasticity tensor cijkl, the piezoelectric stress
tensor eijk, or the permittivity tensor εij .
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Figure 1: (a) Plan view of the x1-x2 plane
and (b) three-dimensional geometry over a few

periods of the model.

For the composite structure shown in Figure 1
the material constants only depend on x1 and
x2. We denote by p1 the periodicity in the x1

direction and by p2 the periodicity in the x2 di-
rection. The width of the ceramic pillar in the x1

and x2 direction is denoted by s and t, respec-
tively. For the 2-2 composites considered here
we need simply set t = p2. The dependent vari-
ables F (r, t) propagating within these periodic
structures are then approximated as a Floquet
series

F (r, t, k, ω) =

(2N+1)2
∑

s=1

F s(k, ω)e(ωt−k·r−Gs·r)

(1)
where r = (x1, x2, x3), t is time, ω is the angular
frequency, k = (k1, k2, k3) is the wave vector,

Gs =
(

2π
p1

Hs,1, 2π
p2

Hs,2, 0
)

and H is an ordered

set of Fourier coefficient indices.

2.2 The Model

The piezoelectric constitutive equations to-
gether with Newton’s second law and Gauss’s
law for dielectric media are [6]

Tij = cijkluk,l + elijφ,l (2)

Di = eikluk,l − εilφ,l (3)

ρ
∂2uj

∂t2
= Tij,i (4)

Di,i = 0. (5)

Equations (2) to (5) constitute 16 equations in
the 16 unknowns which are the stresses Tij, the
displacements uk, the electric potential φ and
the electrical displacements Di . The notation
can be compacted by defining a generalized dis-
placement field u where u = (u1, u2, u3, u4 =
φ) and three generalized stress vectors ti =
(Ti1, Ti2, Ti3, Di). Substituting the Fourier de-
scription of the material properties and expan-
sion (1) into these four equations we obtain, af-
ter some manipulations (see [4] for full details),
the generalised eigenvalue problem

[

ω2R − B 0
−C2 I

](

U
T3

)

=

k3

[

C1 I
D 0

](

U
T3

)

(6)

in the 8(2N + 1)2 eigenvalues k
(r)
3 and corre-

sponding eigenvectors

[

U
T3

](r)

where R,B,Ci

and D are large matrices containing the material
Fourier coefficients and wavenumbers k1 and k2.
Solving equation (6) and introducing the rela-
tive amplitudes A(r) we get

(

u(r, t)
tq3(r, t)

)

= e(ωt−k1x1−k2x2) ×

(2N+1)2
∑

q=1

e−Gq ·r





8(2N+1)2
∑

r=1

A(r)e−k
(r)
3 x3

[

uq

tq3

](r)


 . (7)



Energy distribution within the transducer can
be used to clarify particular types of modes in
conjunction with examining the profiles of the
displacements, stresses and electric potential.
To examine the energy we use the Poynting vec-
tor defined as

Pj = −Tijui,t + φDj,t. (8)

Substituting equations (2) and (3) into equation
(8) and since uk,t = ωuk by equation (1), then

Pj = −ω(cijkluk,l+elijφ,l)ui+

ωφ(ejkluk,l − εjlφ,l). (9)

2.3 Boundary Conditions

The method is sufficiently general to cope
with a wide range of boundary conditions but
for simplicity we shall consider the mechanical
boundary conditions of a stress free plate. From
equation (7) we have,

0 =

8(2N+1)2
∑

r=1

A(r)e−k
(r)
3 h[T q

3i]
(r), (10)

and

0 =

8(2N+1)2
∑

r=1

A(r)[T q
3i]

(r). (11)

For the electrical boundary conditions we fix
the electrical potential at the top and bottom of
the transducer. The surface potential is defined
as

φ(x1, x2, t) = V0e
(ωt−γ1x1−γ2x2), (12)

where γi = kipi/(2π) (i=1,2) denotes the elec-
trode spacing, nondimensionalised as the ratio of
the pillar width to the wavelength. From equa-
tion (7) we can then show that at x3 = h

8(2N+1)2
∑

r=1

A(r)φq,(r)e−k
(r)
3 h = V0{sinc{(k1+

Gq
1)

p1

2
}} × {sinc{(k2 + Gq

2)
p2

2
}}

(13)

and at x3 = 0

8(2N+1)2
∑

r=1

A(r)φq,(r) = 0. (14)

Equations (10), (11), (13) and (14) constitute
8(2N+1)2 equations in the 8(2N+1)2 unknowns
A(r). Hence we can solve this system of lin-
ear equations and examine the displacements,
stresses etc. using equation (7).

One advantage of studying piezoelectric com-
posites is that the electrical operating character-
istics provide an alternative means of deriving
the dispersion curves. The admittance (Y ) ex-
presses the ease with which the alternating cur-
rent flows through the transducer and the res-
onant modes are signified by a maxima in the
real part of the admittance. Using continuity of
the electrical potential at the front interface we
obtain [4]

Y (k1, k2, ω) = ω

(2N+1)2
∑

q=1

{

8(2N+1)2
∑

r=1

A(r)×

(

D
q,(r)
3 − ε0|κ|φ

q,(r)
)

e−jk
(r)
3 h}(p1 sinc((k1+

Gq
1)

p1

2
))(p2 sinc((k2+Gq

2)
p2

2
)) (15)

where κ =
√

(k1 + Gq
1)

2 + (k2 + Gq
2)

2.

3 Results

The methodology presented in the previous
section is illustrated here by investigating the
modal behaviour of a 2-2 composite transducer
composed of 70% PZT5H ceramic and 30%
HY1300/CY1301 polymer (see Tables 1 and
2 for details). The saw pitch (p1) is 2mm,
the kerf width (s) is 1.4mm and the thickness
(h) is 2mm. In the polymer phase the shear
wave attenuation coefficient is 356db/m whilst
the longitudinal wave attenuation coefficient is
139db/m, both measured at 0.5MHz. In the ce-
ramic phase the viscoelastic loss tangent is 1/65.

By examining the conductance as a function
of the electrode spacing γ1 in Figure 2, the
thickness mode can be identified as the central



Physical Property Value

G′(kg m−1s−2) 1.57 × 109

Y ′(kg m−1s−2) 4.28 × 109

ρ ( kg m−3) 1.149 × 103

ε 4
c11 7.1977 × 109

c44 1.5739 × 109

Table 1: Physical properties of the polymer
phase

Constant Units Value

C11 Nm−2 12.72 × 1010

C12 Nm−2 8.02 × 1010

C13 Nm−2 8.47 × 1010

C33 Nm−2 11.74 × 1010

ε33 - 1700
ε11 - 1470
ρb kg m−3 7.5 × 103

e33 C m−2 23.3
e31 C m−2 −6.5

Table 2: Physical properties of the ceramic
phase

ridge of the plot at around 0.65MHz. The lower
frequency maxima correspond to Lamb waves
whilst the inter/intra-pillar modes are the first
set of peaks to the right of the thickness mode at
around 1MHz. The advantages of plotting the
conductance is that we can clearly see the rela-
tive importance of each mode and in this way it
eradicates any spurious modes found in the

dispersion diagram. The electrical conduc-
tance of the transducer can be used to examine
the effect of varying the loss in the passive phase
(see Figure 3).

A modal analysis shows that the thickness
mode is at f = 0.6478MHz and the first an-
tisymmetric Lamb wave (a0 mode) is at f =
0.117MHz. When high shear loss is introduced
it is apparent that there is a damping effect on
all modes except the thickness mode. Figure 4
shows the high shear loss gradually taking effect
in a plot of the absolute value of the electri-
cal impedance of the transducer as a function
of the driving frequency and the degree of shear
attenuation in the passive phase. The aim is to
damp out any unwanted modes around the elec-
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Figure 2: The conductance of the transducer
G (normalised) plotted against the electrode

spacing γ1 and the driving frequency f (MHz)
for a 2-2 composite transducer with low shear

attenuation.
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Figure 3: Conductance (G) versus frequency
(fMHz) for a 2-2 composite transducer. The

solid and dash line represent low shear
attenuation (a) a0mode, (b) thickness mode

and (c) interpillar mode and high shear
attenuation respectively.

trical resonant frequency, which corresponds to
the thickness mode.
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Figure 5: Normalised displacement of a 2-2
composite transducer at the thickness mode for

low shear attenuation in the passive phase
during excitation. Plot (a) shows the in-plane
displacement and plot (b) shows the out of
plane component of displacement as x1 is

varied (at x3 = 0) (f = 0.6478 MHz,
k1 = 1.5 + 0.001 mm−1).
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Figure 6: Displacement of a 2-2 composite
transducer at the thickness mode for low shear

attenuation in the passive phase during
excitation. Plot (a) illustrates the movement of

specific points within the ceramic phase as
time is varied and (b) illustrates the movement
of specific points over time within the polymer

phase (f = 0.6478 MHz, k1 = 1.5 + 0.001
mm−1).

From the impedance curve Figure 3 we see
that as the degree of attenuation (ζ) is increased
both the Lamb modes and intra/interpillar
modes are being damped.

3.1 Modal Analysis

The standard classification of the modes is
problematic here as the supporting medium is
heterogeneous, anisotropic, lossy and piezoelec-



tric. As such the descriptions of the waves in
terms of their symmetry, or as Lamb, Rayleigh,
bulk waves etc. are only psuedo-descriptions
and the actual behaviour is far more com-
plex. Identification of modes is aided by spa-
tial and/or temporal plots of the displacement,
the Poynting vector and the electrical potential.
In Figure 5, for example, the lateral displace-
ment (u1) is negligible compared to the displace-
ment in the thickness direction (u3), which has
its largest values at the faces of the transducer,
within the ceramic. Of course this is at one in-
stant in time and it is useful to examine the
temporal evolution of various spatially fixed ref-
erence points within the device. Figure 6 shows
that the ceramic pillars are moving vertically
with very little motion in the lateral direction
(x1) (note the axes scales), however the polymer
is being pulled sideways with no motion in the
thickness (x3) direction. The in-plane Poynting
vector can be viewed by proportionally displac-
ing its components to show where the energy
is stored. For example, Figure 7 shows that the
energy is distributed throughout the transducer,
primarily in the thickness direction. The sym-
metrical displacement profile in both directions,
the large amplitude of oscillation and the dom-
inant displacement being in the thickness direc-
tion all point to this being the thickness mode.

4 Conclusions

The plane wave expansion (PWE) method
is a frequency domain approach for analysing
the modal behaviour of periodic, anisotropic,
piezoelectric composites. We have extended
the method to include frequency dependent vis-
coelastic losses in both the ceramic and polymer
phases. One advantage of this approach over
time domain methods is that information on low
amplitude or high frequency modes is not lost.
Conductance spectra for low and high shear at-
tenuation in the passive phase were compared
and this showed that the use of a high shear
loss polymer damps unwanted lateral modes and
results in an improved bandwidth around the
thickness mode. One advantage of piezoelectric
composites is that the electrical characteristics
provide an additional means of examining the
mechanical wave dispersion properties.
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Figure 7: Normalised Poynting vector of a 2-2
composite transducer at the thickness mode for

low shear attenuation in the passive phase.
Plots (a) and (b) show the components of the

Poynting vector as x3 is varied (at x1 = 0)
(f = 0.6478 MHz, k1 = 1.5 + 0.001 mm−1).

This approach can circumvent the numerical
instabilities and lengthy computation times as-
sociated with the standard modal analysis which
relies on the identification of the zeros of the de-
terminant of a large, ill-conditioned matrix. Al-
though the standard classification of the modes
is problematic, as the supporting medium is het-
erogeneous, anisotropic, lossy and piezoelectric,
we are able to give pseudo-descriptions of the
main supported modes of vibrations using spa-
tial and/or temporal plots of the displacement,
the Poynting vector and the electrical potential.
We are currently investigating the extension of
the model to more irregular geometries, and con-
ducting a quantitative comparison with finite
element predictions and experimental measure-
ments. Our longer term goal is to develop the
method to include realistic operating conditions
such as backing and matching layers, electrical
and mechanical loads and finite lateral dimen-
sions.
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