Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

A Mizuno-Todd-Ye type predictor-corrector algorithm for sufficient linear complimentarity problems

Illes, T. and Nagy, M. (2007) A Mizuno-Todd-Ye type predictor-corrector algorithm for sufficient linear complimentarity problems. European Journal of Operational Research, 181 (3). pp. 1097-1111. ISSN 0377-2217

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

We analyze a version of the Mizuno-Todd-Ye predictor-corrector interior point algorithm for the -matrix linear complementarity problem (LCP). We assume the existence of a strictly positive feasible solution. Our version of the Mizuno-Todd-Ye predictor-corrector algorithm is a generalization of Potra's [F.A. Potra, The Mizuno-Todd-Ye algorithm in a larger neighborhood of the central path, European Journal of Operational Research 143 (2002) 257-267] results on the LCP with -matrices. We are using a v−1 − v proximity measure like Potra to derive iteration complexity result for this algorithm . Our algorithm is different from Miao's method [J. Miao, A quadratically convergent -iteration algorithm for the P*(κ)-matrix linear complementarity problem, Mathematical Programming 69 (1995) 355-368] in both the proximity measure used and the way of updating the centrality parameter. Our analysis is easier than the previously stated results. We also show that the iteration complexity of our algorithm is .