Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Generalised proportional intensities models for repairable systems

Percy, D. and Alkali, B. (2006) Generalised proportional intensities models for repairable systems. IMA Journal of Management Mathematics, 17 (2). pp. 171-185.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Based upon the non-homogeneous Poisson process as recommended by Ascher & Feingold (1984), we investigate suitable models for describing the inter-failure times of complex repairable systems. Specifically, we modify and develop the proportional intensities model (PIM) introduced by Cox (1972b) for this purpose. We illustrate the suitability of these models on hypothetical data taken from the first of these two books. Having identified potential benefits from this approach, we extend the PIM to introduce a new class of generalized proportional intensities models (GPIM), which allow for the inclusion of preventive maintenance (PM) and predictor variables. We discuss the properties and variations of GPIM and comment on similarities and differences between these and other proposed models for complex repairable systems. We also demonstrate the application of simple GPIM to a published data set that was collected from the petroleum industry, using the programming language Fortran and the mathematical software Mathcad. Finally, we consider how the analysis can be improved and extended for scheduling PM actions in practice.