Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Efficient, high-repetition rate, blue source using a compact CR:LiSAF laser

Agate, B. and Kemp, A. and Brown, C.T.A. and Keller, U. and Sibbett, W. (2002) Efficient, high-repetition rate, blue source using a compact CR:LiSAF laser. In: Lasers and Electro-Optics, 2002. CLEO '02. Technical Digest. Summaries of Papers Presented at the. Institute of Electrical and Electronics Engineers Inc., pp. 338-339. ISBN 1557527067

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Summary form only given. We report a compact, directly diode-pumped Cr:LiSAF laser as an alternative pump source. This laser has an electrical-to-optical efficiency in excess of 1% and produces transform-limited pulses of ∼150 fs in duration at ∼865 nm. The average power is 35 mW and the repetition rate is ∼250 MHz, which implies modest peak powers of less than 1 kW. At these low power levels, efficient frequency doubling usually requires complex arrangements, especially if the pulse duration is to be preserved. In this paper we describe the use of a relatively thick doubling crystal in a single-pass, extra-cavity arrangement. Although the second harmonic pulses suffer temporal broadening, this represents an effective way to achieve efficient frequency conversion in a simplified configuration. The nonlinear crystal was potassium niobate (KNbO3) cut for non-critical phase matching at 860 nm and 22°C.