Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

A confocal micro-imaging system incorporating a thermally actuated two axis MEMS scanner

Poland, S.P. and Li, L. and Uttamchandani, D.G. and Girkin, J.M. (2009) A confocal micro-imaging system incorporating a thermally actuated two axis MEMS scanner. Proceedings of SPIE the International Society for Optical Engineering, 7172. p. 717203. ISSN 0277-786X

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

For in-vivo imaging applications the use of conventional confocal microscope systems are simply not practical due to their relatively large size and weight. There is, however, great interest from both the life science research community and the clinical profession for the development of compact and portable micro-optical instrumentation capable of achieving minimally invasive, in-vivo imaging of tissue with sub-cellular resolution. In this paper we describe a novel confocal micro-imaging system incorporating, at its core, a thermally driven, non-resonant two-axis MEMS scanner which serves as a substitute for the two single-axis galvanometer scanners commonly used in standard confocal imaging systems. In this paper we describe the non-linearity of such devices and a number of techniques to compensate for this.