Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

(Ga,In)(N,As) laser structures using distributed feedback

Tombling, C. (2002) (Ga,In)(N,As) laser structures using distributed feedback. WO/2002/045221.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A lasing structure comprises a distributed feedback grating associated with the active region, the grating defined by a periodic structure of quantum well intermixing. This quantum well intermixing (QWI) can be caused by focussed ion beam (FIB) implantation to the quantum well (QW) or multi-quantum well (MQW) active area. Subsequent annealing of the FIB damage will leave local periodic adjustments to the energy levels in the active region, providing the necessary DFB/DBR grating. Alternatively, or in addition, this periodic QWI structure or another periodic variation can be separated from the active region but associated therewith. For example, a QW or MQW structure which overlies the active region will carry the evanescent part of the waveform that is propagating in the active region. A periodic QWI structure in this region will thus affect the waveform. Other means by which this can be achieved are a periodic variation in the dopant concentration, for example created by FIB implantation or masked exposure to an ion beam or the like, a periodic variation in the material of the overlying layers, such as between semiconductor and insulator, and a periodic QWI structure in a QW or MQW structure overlying the active region.