Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

InGaN multiple-quantum-well epifilms on GaN-silicon substrates for microcavities and surface-emitting lasers

Lee, J.K. and Cho, H. and Kim, B.H. and Park, S.H. and Gu, E. and Watson, I.M. and Dawson, M.D. (2006) InGaN multiple-quantum-well epifilms on GaN-silicon substrates for microcavities and surface-emitting lasers. New Physics: Korean Physical Society, 49 (1). pp. 407-411. ISSN 0374-4914

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

We report the processing of InGaN/GaN epifilms on GaN-silicon substrates. High-quality InGaN/GaN multi-quantum wells (MQWs) were grown on GaN-silicon substrates, and their membranes were successfully fabricated using a selective wet etching of silicon followed by a dry etching of the AlGaN buffer layer. With atomic force microscope (AFM) measurements and photoluminescence (PL) measurements, we investigated the physical and the optical properties of the InGaN/GaN MQWs membranes. On the InGaN/GaN MQW membranes, dielectric distributed Bragg reflectors (DBRs) were successfully deposited, which give, new possibilities for use in GaN microcavity and surface-emitting laser fabrication.