Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Use of intracavity adaptive optics in solid-State lasers operation at 1um

Lubeigt, W. and VanGrol, P. and Valentine, G.J. and Burns, D. (2003) Use of intracavity adaptive optics in solid-State lasers operation at 1um. In: Adaptive Optics for Industry and Medicine: Proceedings of the 4th International Workshop Münster, Germany, Oct. 19-24, 2003. Springer Proceedings in Physics, 102 . Springer-Verlag, Berlin, Germany, pp. 217-227. ISBN 978-3-540-23978-9

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

An intracavity 37-element deformable membrane mirror (DMM) has been used in order to control the transverse mode profile of a diode-pumped solidstate laser. Automatic spatial mode and output power optimisation of Nd:YVO4 end-pumped and Nd:YAlO side-pumped lasers are demonstrated using a closed-loop genetic algorithm. Transverse mode and power optimisation of a diode-pumped, grazing incidence Nd:GdVO4 laser has been performed successfully. The optimisation procedure featured a genetic algorithm ensuring the global maximum is attained. Using a Michelson interferometer with the DMM operating intracavity, the DMM was found to present negligible deformation when used with a power density of 115W/cm2 but noticeable deformation appeared with a power density of 1.25 kW/cm2.