Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Modulational instability of dust envelope waves with grain and charge distribution

Duan, Wen-shan and Parkes, John and Zhang, Lei (2004) Modulational instability of dust envelope waves with grain and charge distribution. Physics of Plasmas, 11 (8). pp. 3762-3766. ISSN 1070-664X

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A reasonable normalization for a dusty plasma with many different species of dust grains is adopted. By applying a reductive perturbation technique to the equations governing a dusty plasma with N different species of dust grains, a nonlinear Schrödinger equation (NSLE) is derived that governs the modulation of dust-acoustic waves. The effect of dust size and charge distribution on the modulational instability of these waves is studied. If there are positively charged dust grains, which is a possibility suggested by experimental results, the envelope soliton solutions to the NLSE may be different from the ones associated with a dusty plasma containing mono-sized dust grains. The instability properties may also be different. In the former case the instability region depends on the percentage of electrons residing on the dust grains. In particular, if the number of electrons residing on the dust grains is small enough, the envelope waves are unstable.