Picture of aircraft jet engine

Strathclyde research that powers aerospace engineering...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers involved in aerospace engineering and from the Advanced Space Concepts Laboratory - but also other internationally significant research from within the Department of Mechanical & Aerospace Engineering. Discover why Strathclyde is powering international aerospace research...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Micro-extrusion of ultrafine grained aluminium

Rosochowski, A. and Presz, W. and Olejnik, L. and Richert, M. (2007) Micro-extrusion of ultrafine grained aluminium. International Journal of Advanced Manufacturing Technology, 33 (1-2). pp. 137-146. ISSN 0268-3768

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Microforming of normal, coarse grain (CG) metals leads to scale problems which originate from the fact that the grain size becomes comparable to the part size. A possible way of dealing with these problems is replacing CG metals with ultra-fine grained (UFG) metals. UFG metals can be produced in bulk by severe plastic deformation (SPD). This paper describes using UFG aluminium 1070 for preliminary trials of micro extrusion of a cylindrical cup. The process of producing bulk UFG aluminium by SPD is explained and the material obtained characterised. The preparation of micro billets for the extrusion operation is discussed. Backward extrusion is carried out for two types of material, CG and UFG. This enables a comparison of the material behaviour and product characteristics. Using UFG aluminium in microforming results in more uniform products with improved mechanical properties.