Picture of Open Access badges

Discover Open Access research at Strathprints

It's International Open Access Week, 24-30 October 2016. This year's theme is "Open in Action" and is all about taking meaningful steps towards opening up research and scholarship. The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Explore recent world leading Open Access research content by University of Strathclyde researchers and see how Strathclyde researchers are committing to putting "Open in Action".


Image: h_pampel, CC-BY

Interpreting three-dimensional shape distributions

Rea, H. and Sung, R. and Corney, J.R. and Clark, D. and Taylor, N.k. (2005) Interpreting three-dimensional shape distributions. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 219 (6). pp. 553-566. ISSN 0954-4062

Full text not available in this repository. (Request a copy from the Strathclyde author)


Effective content-based shape retrieval systems would allow engineers to search databases of three-dimensional computer-aided design (CAD) models for objects with specific geometries or features. Much of the academic work in this area has focused on the development of indexing schemes based on different types of three-dimensional to two-dimensional 'shape functions'. Ideally, the shape function used to generate a distribution should be easy to compute and permit the discrimination of both large and small features. The work reported in this paper describes the properties of three new shape distributions based on computationally simple shape functions. The first shape function calculates the arithmetic difference between distributions derived (using the original D2 distance shape function) from both a three-dimensional model and its convex hull. The second shape function is obtained by sampling the angle between random pairs of facets on the object. The third shape function uses the surface orientation to filter the results of a distance distribution. The results reported in this paper suggest that these novel shape functions improve significantly the ability of shape distributions to discriminate between complex engineering parts.