Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Algorithms for the physical rendering and assembly of octree models

Medellin, H. and Corney, J.R. and Davies, J.B.C. and Lim, T.C. and Ritchie, J.M. (2006) Algorithms for the physical rendering and assembly of octree models. Computer-Aided Design, 38 (1). pp. 69-85. ISSN 0010-4485

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Hierarchical decomposition techniques are well established for the representation of 2D images, the calculation of distance maps, and the modelling of volume data. However, recent work has suggested that their use can be extended to the manufacture of physical objects for low cost prototyping and visualization. This paper details various decomposition and assembly planning routines created to support this process. Specifically the decomposition methods are described to generate octants appropriate for the physical assembly process. Having established methods for generating suitable octrees, three different algorithms for planning the assembly of octrees are presented. The comparative performance of these different approaches is discussed.