Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Kinetics of gel formation in dilute dispersions with strong attractive particle interactions

Sandkuhler, Peter and Sefcik, J. and Morbidelli, M. (2004) Kinetics of gel formation in dilute dispersions with strong attractive particle interactions. Advances in Colloid and Interface Science, 108. pp. 133-143. ISSN 0001-8686

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

We report a combined experimental and modeling study to investigate the kinetics of the transformation of a colloidal dispersion with strong attractive particle interactions into a gel. In the model, a two step mechanism is proposed, where an initial aggregation step is followed by an interconnection step leading to a particle network spanning the entire system volume. Using the Smoluchowski aggregation equation for the first step, we introduce a criterion to determine when the aggregation process is arrested and clusters become caged. In the second step the caged clusters diffuse over short distances and interconnect to form the particle network. The reliability of the gelation times computed by the model has been tested by comparison with a suitable set of experimental data. In addition, we show that the concept of mathematical gelation within the Smoluchowski aggregation equation is not appropriate for the description of the entire gel formation process in this system.