Picture of flying drone

Award-winning sensor signal processing research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers involved in award-winning research into technology for detecting drones. - but also other internationally significant research from within the Department of Electronic & Electrical Engineering.

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

On error covariances in variational data assimilation

Gejadze, I.Y. and Le-Dimet, F. and Shutyaev, V. (2007) On error covariances in variational data assimilation. Russian Journal of Numerical Analysis and Mathematical Modelling, 22 (2). pp. 163-175. ISSN 0927-6467

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The problem of variational data assimilation for a nonlinear evolution model is formulated as an optimal control problem to find the initial condition function. The equation for the error of the optimal solution (analysis) is derived through the statistical errors of the input data (background and observation errors). The numerical algorithm is developed to construct the covariance operator of the analysis error using the covariance operators of the input errors. Numerical examples are presented.