Strathprints logo
Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Multiscale modeling of island nucleation and growth during cu(100) homoepitaxy

Basham, M. and Montalenti, F. and Mulheran, P.A. (2006) Multiscale modeling of island nucleation and growth during cu(100) homoepitaxy. Physical Review B, 73 (4). 045422. ISSN 1098-0121

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The long-time scale dynamics of small Cu/Cu(100) islands are studied. Atomistic simulations using embedded atom method (EAM) potentials and the dimer method saddle point searches provide pathways and their temperature-dependent rates to lattice-based kinetic Monte Carlo (KMC) simulations. The KMC utilizes translational symmetry to identify previously visited sites and re-use the atomistic rates. As a result very long time scales are accessible to the simulation which reveals the dissociation as well as the diffusion mechanisms of the small islands in an unbiased manner. Our results for island diffusion reproduce well the activation energies calculated in previous work, and provide in addition the associated frequency prefactors. The island dissociation pathways are rationalized in terms of previously anticipated mechanisms. We also utilize our results in mean field rate equations to predict "kinetic phase diagrams" for the critical island size as a function of temperature and vapor deposition rate during Cu(100) homoepitaxy. We predict that the higher critical island sizes (i>2) should be observable at higher temperatures (above ~500 K) at experimentally accessible deposition rates.

Item type: Article
ID code: 8495
Keywords: submonolayer epitaxial-growth, metal 100 surfaces, thin-film growth, cluster diffusion, size distributions, capture zones, dynamics, kinetics, dissociation, simulation, copper, nucleation, discontinuous metallic thin films, metallic epitaxial layers, vapour phase epitaxial growth, Monte Carlo methods, diffusion, phase diagrams, Chemical technology, Electronic, Optical and Magnetic Materials, Condensed Matter Physics
Subjects: Technology > Chemical technology
Department: Faculty of Engineering > Chemical and Process Engineering
Unknown Department
Related URLs:
    Depositing user: Strathprints Administrator
    Date Deposited: 08 Sep 2009 16:49
    Last modified: 28 Mar 2014 05:08
    URI: http://strathprints.strath.ac.uk/id/eprint/8495

    Actions (login required)

    View Item