Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Multiscale modeling of island nucleation and growth during cu(100) homoepitaxy

Basham, M. and Montalenti, F. and Mulheran, P.A. (2006) Multiscale modeling of island nucleation and growth during cu(100) homoepitaxy. Physical Review B, 73 (4). 045422. ISSN 1098-0121

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The long-time scale dynamics of small Cu/Cu(100) islands are studied. Atomistic simulations using embedded atom method (EAM) potentials and the dimer method saddle point searches provide pathways and their temperature-dependent rates to lattice-based kinetic Monte Carlo (KMC) simulations. The KMC utilizes translational symmetry to identify previously visited sites and re-use the atomistic rates. As a result very long time scales are accessible to the simulation which reveals the dissociation as well as the diffusion mechanisms of the small islands in an unbiased manner. Our results for island diffusion reproduce well the activation energies calculated in previous work, and provide in addition the associated frequency prefactors. The island dissociation pathways are rationalized in terms of previously anticipated mechanisms. We also utilize our results in mean field rate equations to predict "kinetic phase diagrams" for the critical island size as a function of temperature and vapor deposition rate during Cu(100) homoepitaxy. We predict that the higher critical island sizes (i>2) should be observable at higher temperatures (above ~500 K) at experimentally accessible deposition rates.