Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Ripening processes in supported and pinned nanoclusters - experiment, simulation and theory

Bennett, R.A. and Tarr, D.M. and Mulheran, P.A. (2003) Ripening processes in supported and pinned nanoclusters - experiment, simulation and theory. Journal of Physics: Condensed Matter, 15 (42). S3139-3152. ISSN 0953-8984

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

We have investigated experimentally and theoretically the role that ripening processes play in the evolution of supported transition metal nanoclusters on solid surfaces. We discuss some avenues of analysis that can be more informative of the dominant mechanisms than mere temporal measures of island size. Our model system is formed by the growth of Pd nanoclusters at room temperature on the cross-linked (1 × 2) reconstructed TiO2(110) surface. The reconstructed surface contains a rectangular array of 'defects' that nucleate and pin the clusters. We have followed the surface evolution by variable temperature scanning tunnelling microscopy as the temperature was raised stepwise to 973 K. We find that the ripening is dominated by an Ostwald-type mechanism with particles remaining immobile during growth (decay). Monte Carlo simulations of the ripening of arrays of three-dimensional islands have been undertaken for comparison with the experiments. These reproduce the spatial properties of the experimental arrays and the scaling nature of the height distribution. In addition the classic mean field theory for the size distribution is modified to include island size-separation correlations and is found to recover the size distribution found in both the simulation and the experiment. We conclude that detailed atomistic understanding of ripening is not always necessary to understand important features of nanostructure evolution.

Item type: Article
ID code: 8492
Keywords: scanning-tunneling-microscopy, surface diffusion, growth, tio2(110), particles, clusters, islands, size, Chemical technology, Materials Science(all), Condensed Matter Physics
Subjects: Technology > Chemical technology
Department: Faculty of Engineering > Chemical and Process Engineering
Related URLs:
    Depositing user: Strathprints Administrator
    Date Deposited: 08 Sep 2009 16:12
    Last modified: 04 Sep 2014 19:14
    URI: http://strathprints.strath.ac.uk/id/eprint/8492

    Actions (login required)

    View Item