Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Towards a correlation between drug properties and in vitro transdermal flux variability

Frum, Y. and Khan, G.M. and Sefcik, J. and Rouse, J.J. and Eccleston, G.M. and Meidan, V.M. (2007) Towards a correlation between drug properties and in vitro transdermal flux variability. International Journal of Pharmaceutics, 336 (1). pp. 140-147. ISSN 0378-5173

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Over recent years, there has been growing evidence that the permeability coefficient variability describing any specific transdermal drug delivery system is not always normally distributed. However, since different researchers have used different test compounds, methodologies and skin types, it has been difficult to identify any general correlation between drug properties and flux variability. The aim of the present study was to investigate whether there was a relationship between these two variables. To this end, six different compounds (sucrose, adenosine, aldosterone, corticosterone, oestradiol and testosterone) exhibiting a range of partition coefficients but relatively similar molecular weights were screened by taking multiple replicate measurements of their permeation profiles as they penetrated across porcine skin in vitro. It was found that for relatively hydrophilic solutes (log Po/w ≤ not, vert, similar2.5), physicochemical properties that facilitated slow transdermal flux were associated with more positively skewed permeability coefficient distributions while rapid flux was associated with more symmetric distributions. However, no correlation could be found between molecular properties and the extent of statistical fit to either the normal or log-normal distribution.