Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Inhibition of glutathione reductase by chromium (VI)

Bibi, S. and Angeli, F. and Grant, M.H. (2004) Inhibition of glutathione reductase by chromium (VI). In: Proceedings of the British Pharmacological Society Conference 2004. British Pharmacological Society.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Chromium (VI) compounds have serious toxic and carcinogenic effects in humans. To exert toxicity and carcinogenicity Cr (VI) must be reduced inside cells, and it can be reduced both enzymatically and non-enyzmatically. Glutathione reductase (GR) has been implicated in the intracellular reduction of Cr (VI). This enzyme normally re-cycles reduced glutathione (GSH) from oxidized glutathione (GSSG), and is essential for protecting cells against intermediates which deplete GSH, and against oxidative stress. During its reduction inside cells Cr (VI) disrupts redox balance, and generates reactive oxygen species. These oxidize GSH and deplete reduced thiols, leading to toxicity and carcinogenesis. Susceptibility to Cr (VI) will depend on the ability of cells to protect themselves by recycling GSH via GR. The effect of exposure to Cr (VI) in vitro on the activity of GR in cells derived from liver (Hep G2 cells), colon (HT 115 cells), larynx (Hep 2 cells) and macrophages (J774.1 cells) was investigated.