Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Chromium vI induced cytoskeletal damage and cell death in isolated hepatocytes

Gunaratnam, M. and Grant, M.H. (2002) Chromium vI induced cytoskeletal damage and cell death in isolated hepatocytes. In: Biochemical Society Transactions. Biochemical Society, pp. 748-750.

[img]
Preview
PDF (strathprints008431.pdf)
strathprints008431.pdf

Download (119kB) | Preview

Abstract

Cr(VI) is a known human carcinogen. Although it has been investigated widely, the mechanism(s) of its action is/are not fully understood. The aim of this study was to evaluate Cr(VI)-induced damage to the cell cytoskeleton and the mode of cell death in primary cultures of hepatocytes. Exposure of the cultured cells (10(5)/cm(2)) to 1 and 5 microM Cr(VI) for 24 h resulted in loss of the cell cytoskeleton, and this was accompanied by membrane blebbing and shrinking of the cell. Staining of the cells with annexin V and propidium iodide showed that Cr(VI) induces apoptosis at low concentrations (5 microM), whereas at higher concentrations (25 microM) it induces necrosis. This study shows that Cr(VI) causes damage to the cell cytoskeleton, and induces apoptosis at low concentrations. However, the importance of necrosis and apoptosis in vivo, and the effects of longer exposure times, which simulate environmental and occupational exposure to Cr(VI), remain to be investigated.