Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Modification of plasticised poly (vinyl chloride)

Zhao, X.B. and Courtney, J.M. (2006) Modification of plasticised poly (vinyl chloride). In: Focus on Polymeric Materials Research. Nova Science, pp. 1-27. ISBN 1-59454-843-9

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Surface modification of plasticised poly (vinyl chloride) (PVC), with di-(2-ethylhexyl) phthalate (DEHP) as plasticiser, for the improvement of blood compatibility in potential clinical use such as cardiopulmonary bypass was achieved by heparinisation. The influence of surface modification on blood compatibility was assessed in terms of the influence on fibrinogen and factor XII adsorption in vitro, and the generation of thrombin-antithrombin III complex (TAT) and the complement component C3a, in vitro and ex vivo. Electron spectroscopy for chemical analysis (ESCA) was used to characterise the heparinised surface in order to correlate the surface properties with the blood response. Results indicate that at the plasticised PVC surface there is a higher content of heparin than that of the PVC and the DEHP content is lower than that present at the surface of standard plasticised PVC. The blood compatibility assessment confirms the importance of surface modification for the improvement of blood compatibility.