Picture of a sphere with binary code

Making Strathclyde research discoverable to the world...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. It exposes Strathclyde's world leading Open Access research to many of the world's leading resource discovery tools, and from there onto the screens of researchers around the world.

Explore Strathclyde Open Access research content

Classification of wrist movements using EEG-based wavelets features

Lakany, H. and Conway, B.A. (2006) Classification of wrist movements using EEG-based wavelets features. 27th Annual International Conference of the Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005 . IEEE. ISBN 0-7803-8741-4

Full text not available in this repository.

Abstract

Our aim is to assess and evaluate signal processing and classification methods for extracting features from EEG signals that are useful in developing brain-computer interfaces. In this paper, we report on results of developing a method to classify wrist movements using EEG signals recorded from a subject whilst controlling a joystick and moving it in different directions. Such method could be potentially useful in building brain-computer interfaces (BCIs) where a paralysed person could communicate with a wheelchair and steer it to the desired direction using only EEG signals. Our method is based on extracting salient spatio-temporal features from the EEG signals using continuous wavelet transform. We perform principal component analysis on these features as means to assess their usefulness for classification and to reduce the dimensionality of the problem. We use the results from the PCA as means to represent the different directions. We use a simple technique based on Euclidean distance to classify the data. The classification results show that we are able to discriminate between different directions using the selected features.