Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Linearly extended tetrathiafulvalene analogues with fused thiophene units as pi-conjugated spacers

Leriche, P. and Raimundo, J.M. and Turbiez, M. and Monroche, V. and Allain, M. and Sauvage, F.X. and Roncali, J. and Frere, P. and Skabara, P.J. (2003) Linearly extended tetrathiafulvalene analogues with fused thiophene units as pi-conjugated spacers. Journal of Materials Chemistry, 13 (6). pp. 1324-1332. ISSN 0959-9428

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

A new series of linearly extended tetrathiafulvalene analogues with thienothiophene and dithienothiophene pi-conjugating spacers has been synthesized. Electronic absorption spectra present a vibronic fine structure typical for rigid conjugated systems. Investigation of the electrochemical behaviour of the new donors by cyclic voltammetry reveals the successive generation of stable radical cation and dication species. The crystallographic structure of a single crystal of a dication salt of TT-TTF(ClO4)(2) has been analysed by X-ray diffraction. The dication presents a syn conformation stabilised by S...S intramolecular interactions. The quinoid structure expected for the spacer for the +2 oxidation state is clearly revealed by the bond lengths.