Picture of a sphere with binary code

Making Strathclyde research discoverable to the world...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. It exposes Strathclyde's world leading Open Access research to many of the world's leading resource discovery tools, and from there onto the screens of researchers around the world.

Explore Strathclyde Open Access research content

A novel diffusion cell ideal for the study of membrane extraction/permeation processes and for device/sensor development

Ching, C.T.S. and Connolly, P. (2008) A novel diffusion cell ideal for the study of membrane extraction/permeation processes and for device/sensor development. Sensors and Actuators B: Chemical, 129 (1). pp. 30-34. ISSN 0925-4005

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A novel diffusion cell has been constructed which allows study of membrane extraction/permeation processes in a more realistic approach. To examine the performance of this new design, the extraction of glucose in this diffusion cell by reverse iontophoresis has been studied. Reverse iontophoresis refers to the passage of a low level of current through a synthetic or biological membrane to promote the transport of both charged and neutral molecules. The performance of this diffusion cell is compared with results from the extraction studies using a diffusion cell developed by Connolly et al. [P. Connolly, C. Cotton, F. Morin, Opportunities at the skin interface for continuous patient monitoring: a reverse iontophoresis model tested on lactate and glucose, IEEE Trans. Nanobiosci. 1 (1) (2002) 37-41] and results from the human glucose extraction studies in vivo. This newly developed diffusion cell can be easily fabricated for membrane extraction/permeation studies and for device and sensor development.