Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

The impact of childhood obesity on musculoskeletal form

Wearing, S.C. and Hennig, E.M. and Byrne, N.M. and Steele, J.R. and Hills, A.P. (2006) The impact of childhood obesity on musculoskeletal form. Obesity Reviews, 7 (2). pp. 209-218. ISSN 1467-7881

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Despite the greater prevalence of musculoskeletal disorders in obese adults, the consequences of childhood obesity on the development and function of the musculoskeletal system have received comparatively little attention within the literature. Of the limited number of studies performed to date, the majority have focused on the impact of childhood obesity on skeletal structure and alignment, and to a lesser extent its influence on clinical tests of motor performance including muscular strength, balance and locomotion. Although collectively these studies imply that the functional and structural limitations imposed by obesity may result in aberrant lower limb mechanics and the potential for musculoskeletal injury, empirical verification is currently lacking. The delineation of the effects of childhood obesity on musculoskeletal structure in terms of mass, adiposity, anthropometry, metabolic effects and physical inactivity, or their combination, has not been established. More specifically, there is a lack of research regarding the effect of childhood obesity on the properties of connective tissue structures, such as tendons and ligaments. Given the global increase in childhood obesity, there is a need to ascertain the consequences of persistent obesity on musculoskeletal structure and function. A better understanding of the implications of childhood obesity on the development and function of the musculoskeletal system would assist in the provision of more meaningful support in the prevention, treatment and management of the musculoskeletal consequences of the condition.