Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

The pathomechanics of plantar fasciitis

Wearing, S.C. and Hennig, E.M. and Byrne, N.M. and Steele, J.R. and Hills, A.P. (2006) The pathomechanics of plantar fasciitis. Sports Medicine, 36 (7). pp. 585-611. ISSN 0112-1642

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Plantar fasciitis is a musculoskeletal disorder primarily affecting the fascial enthesis. Although poorly understood, the development of plantar fasciitis is thought to have a mechanical origin. In particular, pes planus foot types and lower-limb biomechanics that result in a lowered medial longitudinal arch are thought to create excessive tensile strain within the fascia, producing microscopic tears and chronic inflammation. However, contrary to clinical doctrine, histological evidence does not support this concept, with inflammation rarely observed in chronic plantar fasciitis. Similarly, scientific support for the role of arch mechanics in the development of plantar fasciitis is equivocal, despite an abundance of anecdotal evidence indicating a causal link between arch function and heel pain. This may, in part, reflect the difficulty in measuring arch mechanics in vivo. However, it may also indicate that tensile failure is not a predominant feature in the pathomechanics of plantar fasciitis. Alternative mechanisms including 'stress-shielding', vascular and metabolic disturbances, the formation of free radicals, hyperthermia and genetic factors have also been linked to degenerative change in connective tissues. Further research is needed to ascertain the importance of such factors in the development of plantar fasciitis.