Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Frequency-domain analysis detects previously unidentified changes in ground reaction force with visually guided foot placement

Wearing, S.C. and Smeathers, J.E. and Urry, S.R. (2003) Frequency-domain analysis detects previously unidentified changes in ground reaction force with visually guided foot placement. Journal of Applied Biomechanics, 19 (1). pp. 71-78. ISSN 1065-8483

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Studies investigating the effect of targeting on gait have focused on the analysis of ground reaction force (GRF) within the time domain. Analysis within the frequency domain may be a more sensitive method for evaluating variations in GRF. The aim of the present study was to investigate the effect of visual targeting on GRF analyzed within the frequency domain. A within-subject repeated-measures design was used to measure the mediolateral, vertical, and antero-posterior components of the GRF of 11 healthy volunteers while walking at their own pace over a paper-covered walkway. A 30 x 24-cm target area was superimposed over a hidden Kistler force plate mounted at the midpoint of the walkway. GRF were recorded with and without the target and were analyzed within the frequency domain. Although visually guided foot placement has previously been undetected by traditional time-domain measures, targeting was found to significantly increase the frequency content of both the mediolateral (t10 = -4.07, p < 0.05) and antero-posterior (t10 = -2.52, p < 0.05) components of GRF. Consequently, it appears that frequency analysis is a more sensitive analytic technique for evaluating GRF. These findings have methodological implications for research in which GRF is used to characterize and assess anomalies in gait patterns.