Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Understanding intention of movement from electroencephalograms

Lakany, H. and Conway, B.A. (2007) Understanding intention of movement from electroencephalograms. Expert Systems, 24 (5). pp. 295-304. ISSN 0266-4720

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

In this paper, we propose a new framework for understanding intention of movement that can be used in developing non-invasive brain-computer interfaces. The proposed method is based on extracting salient features from brain signals recorded whilst the subject is actually (or imagining) performing a wrist movement in different directions. Our method focuses on analysing the brain signals at the time preceding wrist movement, i.e. while the subject is preparing (or intending) to perform the movement. Feature selection and classification of the direction is done using a wrapper method based on support vector machines (SVMs). The classification results show that we are able to discriminate the directions using features extracted from brain signals prior to movement. We then extract rules from the SVM classifiers to compare the features extracted for real and imaginary movements in an attempt to understand the mechanisms of intention of movement. Our new approach could be potentially useful in building brain-computer interfaces where a paralysed person could communicate with a wheelchair and steer it to the desired direction using a rule-based knowledge system based on understanding of the subject's intention to move through his/her brain signals.