Picture of Open Access badges

Discover Open Access research at Strathprints

It's International Open Access Week, 24-30 October 2016. This year's theme is "Open in Action" and is all about taking meaningful steps towards opening up research and scholarship. The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Explore recent world leading Open Access research content by University of Strathclyde researchers and see how Strathclyde researchers are committing to putting "Open in Action".


Image: h_pampel, CC-BY

A fuzzy inference system for fault detection and isolation : application to a fluid system

White, Christopher J. and Lakany, H. (2008) A fuzzy inference system for fault detection and isolation : application to a fluid system. Expert Systems with Applications, 35 (3). pp. 1021-1033. ISSN 0957-4174

Full text not available in this repository. (Request a copy from the Strathclyde author)


This work focuses on the design and implementation of a fuzzy inference system for fault detection and isolation (FDI) which can learn from example fault data, and the determination of a suitable optimisation strategy for the membership functions. A FDI system was developed which is based on adaptive fuzzy rules. A number of optimisation strategies were then applied; it was found that an evolutionary algorithm not only produced the best results but did so with relatively little processing effort and with excellent consistency. The adaptive fuzzy system, thus optimised, was tested against a neural network, which was trained to produce analogue outputs as an indication of fault magnitude. The fuzzy solution produced the best accuracy. We can conclude that an adaptive fuzzy inference system for FDI, using an evolutionary algorithm to learn from examples, can provide an accurate and readily comprehensible solution to diagnosing and evaluating fluid process plant faults.