Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Low level laser therapy and tissue engineered skin substitutes: effect on the proliferation rate of 3T3 mouse fibroblast cells

Ho, Gideon and Henderson, Catherine J. and Barbenel, Joseph C. and Grant, M.H. (2004) Low level laser therapy and tissue engineered skin substitutes: effect on the proliferation rate of 3T3 mouse fibroblast cells. Proceedings of SPIE: The International Society for Optical Engineering, 5610 (124).

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

With the rapid development of tissue engineering and gene therapy, collagen-based biomaterials are frequently used as cell transplant devices; an example is tissue-engineered skin substitutes. In this study of low level laser therapy (LLLT) we determined the influence of the irradiation and treatment parameters on the proliferation rate of 3T3 mouse fibroblast cells cultured on collagen-glycosaminoglycan (GAG) lattices and Petri dishes for up to 4 and 7 days respectively. Helium-Neon (He-Ne) laser at 1 - 4 J/cm2 was used to irradiate the cells. Using 5-carboxyfluorescein diacetate (CFDA) fluorescence, studies on the proliferation rate of irradiated cells before and after cell attachment, and on different treatment days were conducted. The viability of cells on collagen-GAG lattices were assessed using the MTT assay. It was found that in terms of cell proliferation, the cells irradiated at different fluences and treatment modes (at 3 J/cm2) showed no statistically significant difference from the control cells. Control cells on collagen-GAG lattices were found to be more viable than the irradiated cells. It was concluded that with existing experimental conditions, LLLT was found to have no statistically significant effect on the post-cell attachment proliferation and viability of 3T3 mouse fibroblast cells.