Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

The effect of methanol washing of plasticized polyvinyl chloride on biomaterial-contact-mediated CD11b (mac-1) expression in a rat recirculation model

Gourlay, T. and Stefanou, D.C. and Taylor, K.M. (2002) The effect of methanol washing of plasticized polyvinyl chloride on biomaterial-contact-mediated CD11b (mac-1) expression in a rat recirculation model. Artificial Organs, 26 (1). pp. 5-9. ISSN 0160-564X

Full text not available in this repository. Request a copy from the Strathclyde author


Our objective was to assess whether using a methanol wash to reduce the level of plasticizer present on the surface of medical-grade polyvinyl chloride (PVC) has a moderating effect on the expression of CD11b (mac-1) on neutrophils in rats undergoing recirculation. The study was carried out on 3 groups of 10 adult male Sprague-Dawley rats weighing between 350 and 450 g. In the 2 test groups, the animals were exposed to 48 cm2 of di-(2-ethyl-hexyl)-phthalate (DEHP)-plasticized PVC in a parallel plate recirculating test cell through which blood was recirculated at 1.5 ml/min. In the first test group, the PVC was untreated; in the second test group, the PVC was washed in methanol to reduce the level of plasticizer on the surface. The test cell was connected to the right femoral circulation, and recirculation was established for a period of 60 min. Blood samples were taken at 0, 30, and 60 min for assessment of CD11b expression on neutrophils using flow cytometric analysis. In a third group of 10 control experiments, rats underwent the entire surgical procedure, but without recirculation through the test cell. There was statistically significant (p < 0.001) lower Cdllb expression on neutrophils in the blood of rats perfused through the cell containing methanol-washed PVC after 30 min and at 60 min. CD11b expression was significantly (p < 0.001) lower in the control group than in both test groups at both the 30 and 60 min time points and at the 60 min time point on comparison with the group where blood was perfused through methanol-washed PVC. These results demonstrate that the biomaterial-contact-mediated upregulation of CD11b may be significantly reduced by employing a methanol-washing technique on the plasticized PVC. Although this technique does not entirely eliminate the expression of CDllb on neutrophils, the difference is significant and suggests the role of the plasticizer in the development of this inappropriate inflammatory response.