Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Second generation of minimal invasive extracorporeal circuit: pilot study resting heart system

Fayad, G. and Modine, T. and Naja, G. and Larrue, B. and Azzaoui, R. and Crepin, F. and Decoene, C. and Benhamed, L. and Koussa, M. and Gourlay, T. and Warembourg, H. (2005) Second generation of minimal invasive extracorporeal circuit: pilot study resting heart system. Journal of Extra-Corporeal Technology, 37 (4). pp. 387-389. ISSN 0022-1058

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Cardiopulmonary bypass (CPB) has evolved from a complex multifunctional system to the minimally invasive extracorporeal circuit (MIEC). Concerns currently exist regarding the technically demanding nature of off-pump coronary artery bypass (OPCAB) procedures, the quality of anastomosis associated with it, and the difficulty in achieving "complete revascularization." Recognizing these issues, the so-called mini-CPB concept has evolved in an effort to offer the perceived benefits of OPCAB with the technical advantages of CPB and at the same time minimize the adverse effects of full-scale CPB. The first generation of MIEC had an inherited risk of gas embolisms. Therefore, there was the introduction of the resting heart system (RHS), the main characteristic of which is the venous air removal device. The aim of this study was to describe our early experience, feasibility, and safety with this system to help others who are considering introducing this technique into their clinical practice. Using this system, we operated on 30 consecutive patients. Moderate hypothermia (33 degrees C) CPB and cold intermittent antegrade cardioplegia was used. No technical incidents were encountered. One death from multiorgan failure occurred in a patient operated on for a thoraco-abdominal aneurysm. Our own short-term experience with the RHS has been very favorable, and we will continue to explore this development in CPB technology.