Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Synthesis and electropolymerisation of 3 ',4 '-bis(alkylsulfanyl)terthiophenes and the significance of the fused dithiin ring in 2,5-dithienyl-3,4-ethylenedithiothiophene (DT-EDTT)

Pozo-Gonzalo, Cristina and Khan, Tahir and McDouall, Joseph J.W. and Skabara, Peter J. and Roberts, Donna M. and Light, Mark E. and Coles, Simon J. and Hursthouse, Michael B. and Neugebauer, Helmut and Cravino, Antonio and Sariciftci, N. Serdar (2002) Synthesis and electropolymerisation of 3 ',4 '-bis(alkylsulfanyl)terthiophenes and the significance of the fused dithiin ring in 2,5-dithienyl-3,4-ethylenedithiothiophene (DT-EDTT). Journal of Materials Chemistry, 12 (3). pp. 500-510. ISSN 0959-9428

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A new series of regioregular poly(terthiophenes), bearing bis( thioether) side groups, has been prepared by electrochemical oxidation. Cyclic voltammetry of the parent trimers reveals an increase in electron donating ability in cyclic thioether derivatives. For example, one compound containing a central ethylenedithiothiophene (EDTT) unit gives two irreversible oxidation peaks which are significantly lower than the corresponding values for the structurally analogous bis( methylthio) derivative (DeltaE(1ox) = 170 mV, DeltaE(2ox) = 30 mV). The difference in oxidation potentials of each terthiophene in acetonitrile solution can be explained by examining the highest occupied molecular orbital (HOMO) energies. The electrochemical behaviour of the polymers illustrates the increase in p-doping ability of the EDTT-containing polymer. The cyclic voltammograms and electronic absorption spectra of the polymers show that the polymers containing cyclic thioether units have the lowest bandgap in the series (ca. 1.4 V and 1.5 eV, respectively). Photoinduced IR spectroscopy of poly(dithienyl-3,4-ethylenedithiothiophene) provides evidence of a long-living photoexcited charged state in the polymer.