Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

In Silico Footprinting of Ligands Binding to the Minor Groove of DNA

Anthony, N.G. and Huchet, G. and Johnston, B.F. and Parkinson, B.F. and Suckling, C.J. and Waigh, R.D. and Mackay, S.P. (2005) In Silico Footprinting of Ligands Binding to the Minor Groove of DNA. Journal of Chemical Information and Modeling, 45 (6). pp. 1896-1907. ISSN 1549-9596

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The sequence selectivity of small molecules binding to the minor groove of DNA can be predicted by 'in silico footprinting'. Any potential ligand can be docked in the minor groove and then moved along it using simple simulation techniques. By applying a simple scoring function to the trajectory after energy minimization, the preferred binding site can be identified. We show application to all known noncovalent binding modes, namely 1:1 ligand:DNA binding (including hairpin ligands) and 2:1 side-by-side binding, with various DNA base pair sequences and show excellent agreement with experimental results from X-ray crystallography, NMR, and gel-based footprinting.