Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Array-format microchip semiconductor disk lasers

Laurand, N. and Lee, C.L. and Gu, E. and Hastie, J.E. and Kemp, A.J. and Calvez, S. and Dawson, M.D. (2008) Array-format microchip semiconductor disk lasers. IEEE Journal of Quantum Electronics, 44 (11). pp. 1096-1103. ISSN 0018-9197

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

We report a detailed study of an array-format 1.055- mum microchip semiconductor disk laser which uses a microlens-patterned diamond both as an array of stabilizing output coupling mirrors and a heatspreader. A thermal study of the devices, using a finite element analysis, is carried out and confirms the thermal management capabilities and power scalability of this microlensed diamond configuration. This design is then exploited to perform a systematic study on a set of microchip lasers having the same semiconductor structure but microlenses with differing characteristics. The transverse mode characteristics of individual semiconductor disk lasers are found to depend on the mode-matching condition and on the microlens aperture size. Mode-matched single-device emission in the fundamental mode (M2 ~ 1.1) with a pump-limited output power of 70 mW is demonstrated. The experimental measurement of the thermal resistance of the device is also shown to agree with the finite element analysis. Finally, array operation, while pumping with a single beam, is reported.