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Abstract We consider periodic halo orbits about artificial equilibrium points near to

the Lagrange points L1 and L2 in the circular restricted three body problem, where the

third body is a low-thrust propulsion spacecraft in the Sun-Earth system. Although

such halo orbits about artificial equilibrium points can be generated using a solar sail,

there are points inside L1 and beyond L2 where a solar sail cannot be placed, so low-

thrust, such as solar electric propulsion, is the only option to generate artificial halo

orbits around points inaccessible to a solar sail. Analytical and numerical halo orbits for

such low-thrust propulsion systems are obtained by using the Lindstedt Poincaré and

differential corrector method respectively. Both the period and minimum amplitude

of halo orbits about artificial equilibrium points inside L1 decreases with an increase

in low-thrust acceleration. The halo orbits about artificial equilibrium points beyond

L2 in contrast show an increase in period with an increase in low-thrust acceleration.

However, the minimum amplitude first increases and then decreases after the thrust

acceleration exceeds 0.415 mm/s2. Using a continuation method, we also find stable

artificial halo orbits which can be sustained for long integration times and require a

reasonably small low-thrust acceleration 0.0593 mm/s2.

Keywords Restricted three body problem · halo orbits · low-thrust propulsion ·
continuation method

1 Introduction

It is well-known that the circular restricted three-body problem (CRTBP) has five nat-

ural equilibrium points. Three of them are on the axis joining the primaries (collinear
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Lagrange points) and two are on the vertices of equilateral triangles joining the pri-

maries (equilateral Lagrange points). At Lagrange points the gravitational forces of the

two primaries and the centrifugal force on a spacecraft in a rotating frame are balanced.

Artificial equilibrium points (AEPs) other than Lagrange points can be generated by

using a constant continuous acceleration from a low-thrust propulsion system such as

a solar sail or solar electric propulsion system.

Around the collinear Lagrange points, ‘classical’ halo orbits have been extensively

studied, for example Farquhar and Kamel [1], Breakwell and Brown [2], Richardson

[3], Howell [4], Thurman and Worfolk [5]. Notably, Richardson [3,6] used the method

of Lindstedt Poincaré to obtain a third-order analytical approximation of periodic halo

orbits (unstable) in a simple, high-precision and straightforward manner. Stable halo

orbits were found by Breakwell and Brown around L2 in the Earth-Moon system [2],

and later on by Howell [4] for a wide range of mass ratios around all three collinear

Lagrange points in an extensive numerical study.

McInnes et al. [7] show continuous surfaces of AEPs can be generated in the CRTBP

for a solar sail low-thrust propulsion system, but only in certain allowed regions. These

AEPs are characterized by the sail lightness number and sail orientation. The linearized

eigenvalue spectrum around AEPs contains at least one centre, so linear periodic orbits

can be generated or the Lindstedt Poincaré method can be applied. McInnes [8] and

Baoyin and McInnes [9], describe halo orbits around AEPs on the line joining the two

primaries in the solar-sail three body problem. However, McInnes [8] describes stable

regions of halo orbits around unstable AEPs, when the amplitude of the halo orbit

becomes large. Waters and McInnes [10] generate unstable ‘artificial’ halo orbits in

the solar-sail CRTBP about AEPs, which are high above the ecliptic plane. However,

for a solar sail, all of these ‘artificial’ halo orbits around AEPs, in and above the eclliptic

plane, are in the allowed/accessible volume of space.

Morimoto et al. [11] find AEPs in the CRTBP for a solar electric or nuclear electric

low-thrust propulsion system. These AEPs are characterized by the low-thrust accel-

eration magnitude and thrust orientation. In particular, marginally stable regions in

addition to unstable regions of AEPs are found that differ from the solar sail prob-

lem which has only unstable regions of AEPs. Morimoto et al. [12] also find resonant

periodic orbits with a constant, continuous acceleration at linear order around the

marginally stable AEPs along the axis joining the primary bodies. In this paper, we

extend this analysis of low-thrust periodic orbit at nonlinear order using the Lindstedt

Poincaré method about unstable AEPs on the line joining the two primaries. Further-

more, we show the feasibility of halo orbits about AEPs where a solar sail cannot

generate periodic orbits because of the requirement that the sail acceleration cannot

be directed towards the Sun i.e., for AEPs inside L1 and beyond L2. The AEPs are

chosen near to the natural Lagrange points L1 and L2 to limit the power and thrust

level from the low-thrust propulsion system. We also show the existence of stable halo

orbits around unstable AEPs beyond L2, using the orbit half-period as a continua-

tion parameter which results better convergence accuracy. Furthermore, spacecraft on

stable orbits are found to require a reasonably small low-thrust acceleration pointing

towards the Sun.

In the next two sections we outline the equations of motion and periodic orbits at

linear order for a low-thrust system in the CRTBP as given by Morimoto et al. [12]

but in compact manner, as that information is needed for analysis of the nonlinear

system. However, we have shown that the system admits a constant of motion since

the equations of motion are explicitly independent of time.
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Fig. 1 Definition of coordinate system and low-thrust spacecraft in a periodic halo orbit about
an artificial equilibrium point beyond L2.

2 Equations of Motion

The CRTBP is a dynamical model that describes the motion of an infinitesimal mass,

a spacecraft under the gravitational influence of two massive bodies in circular motion.

Consider a synodic coodinate frame i.e., co-rotating with the two primary masses m1

and m2 at constant angular velocity ω with origin at their center of mass, as shown

in Fig. 1. The x-axis points along the Sun-Earth line, the z-axis is the axis of rotation

and the y-axis completes the right-handed coordinate system. The system is made

nondimensional by taking the units of length, mass and time such that distance between

the primaries, the product of gravitational constant G and sum of the masses of the

primaries, and the period of the primaries is 1, 1 and 2π respectively. By defining

µ = m2

m1+m2
, m1 is located at (−µ, 0, 0) and m2 is located at (1 − µ, 0, 0) with respect

to centre of mass. If we denote r = [x y z]T as the position vector of the low-thrust

spacecraft relative to the centre of mass, then the position vector of the spacecraft with

respect to the primaries m1 and m2 is given by

r1 = [x + µ y z]T , r2 = [x − (1 − µ) y z]T

The nondimensional equation of motion of a low-thrust spacecraft in the rotating

frame of reference is given by

r̈ + 2 ω × ṙ = ∇V + a0 ≡ F (1)

where V is the effective potential given by

V =

(

1 − µ

r1
+

µ

r2

)

+
1

2
(x2 + y2)

The vector a0 is the acceleration due to the low-thrust propulsion system. At an equi-

librium point r̈ and ṙ vanish, so an equilibrium point is a zero of F i.e., F (r0) = 0.

Thus, a nonequilibrium point r0 in the rotating frame is changed into an artificial equi-

librium point with low-thrust acceleration vector a0 satisfying the following condition

−∇V = a0(r0) = a0u (2)
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where magnitude and direction of low-thrust acceleration is given by

a0 = |∇V |
u = − ∇V

|∇V |
(3)

Taking the dot product on both sides of Eq. (1) by ṙ = v, we get

v.v̇ + 2v.(ω × v) − v.a0 = v.∇V =
dr

dt
.
∂V

∂r

or

d
[

1
2v

T
v − a

T
0 r

]

dt
=

dV

dt

So we have the Jacobi constant for the low-thrust system given by

C(r, v) = 1
2v

T
v − a

T
0 r − V (r) (4)

For the correct initial conditions, the spacecraft will move on a periodic orbit around

an artificial equilibrium point r0 with constant continuous acceleration a0 satisfying

Eq. (3), and having the constant of motion C.

The classical case (with no propulsion) is Hamiltonian and time independent, so

we have an energy integral of motion and this energy is defined by Eq. (4) with a0 =

(0, 0, 0). At the Lagrange points L1 and L2 of the Sun-Earth system, the energies of

the spacecraft at rest are −1.500448970 and −1.500446943 respectively.
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Fig. 2 Zero velocity curves in the Sun-Earth system for (a) energy values of the L1 and (b)
energy values of the L2 point . For classical case a0 = (0, 0, 0) (dashed contour lines) and for
low-thrust system a0 = (0.0001, 0, 0) (solid contour lines)

Fig. 2 shows that classical case contours are closed for energy values at L1 and L2

points (see dashed contour lines). However, in case of a low-thrust system for a0 =

(0.0001, 0, 0) and contours with the same energy values (see solid contour lines), the

contours at L1 and L2 points are opened, permitting the spacecraft to escape from the

Sun-Earth system.
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3 Linearized System

A linear system δẊ = AδX in the vicinity of an equilibrium point r0 is obtained

from the nonlinear system Eq. (1) by using the transformation r = r0 + δr, where

r0 = (x0, 0, 0), δr = (δx, δy, δz)T and δX = (δr, δṙ)T . We assume the attitude of the

low-thrust system u is not perturbed so as to restrict the stability analysis in the sense

of Lyapunov, furthermore a0 is fixed w.r.t. perturbation δr i.e., ∂a0

∂r
= 0. Then the

Jacobian matrix A is given by

A =

(

0 I

M Ω

)

(5)

where I is the unity matrix. Moreover,

M =
∂∇V

∂r

∣

∣

∣

∣

∣

r0

=





a 0 0

0 b 0

0 0 e



 , Ω =





0 2 0

−2 0 0

0 0 0





and

a = 2c + 1, b = 1 − c, e = −c

with

c(x0, µ) =
µ

|x0 + µ − 1|3 +
1 − µ

|x0 + µ|3 > 0

as µ > 0 and 1−µ > 0. In Eq. (5), the z equation is decoupled from x, y equations for

the AEP r0 chosen on the x-axis (or in the x − y ecliptic plane), so the out of ecliptic

plane equation of motion is given by

δz̈ + cδz = 0

which has a simple harmonic solution δz = Az sin(wzt + φz), where wz =
√

c. The

characteristic polynomial for the x, y linearized Eq. (5) rewritten in matrix form









δẋ

δẏ

δẍ

δÿ









=









0 0 1 0

0 0 0 1

a 0 0 2

0 b −2 0

















δx

δy

δẋ

δẏ









(6)

is given by

p(λ) = λ4 + (2 − c)λ2 + (1 + c − 2c2)

By letting α = λ2, then the roots of p(α) = 0 are as follows

α1 =
c − 2 +

√
9c2 − 8c

2
, α2 =

c − 2 −
√

9c2 − 8c

2
(7)

We are now looking for AEPs where c(x0, µ) > 1 (the unstable region) and not the

marginally stable region (where 8/9 ≤ c(x0, µ) < 1) [11], then 9c2 − 8c > (c − 2)2.

From Eq. (7), then α1 > 0 and α2 < 0. So the eigenvalues spectrum of Eq. (6) consists

of a saddle and center {±iλ1,±λr}, where λ1 = wxy =
√−α2 and λr =

√
α1.
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Let u1+iw1 be an eigenvector of the linearized Eq. (6) corresponding to eigenvalue

iλ1 and let v1 and v2 be the eigenvectors corresponding to eigenvalues +λr and −λr.

Then, the generalized solution of Eq. (6) is [13]









δx

δy

δẋ

δẏ









= cos(wxyt)[Au1 + Bw1] + sin(wxyt)[Bu1 − Aw1]

+Ceλrt
v1 + De−λrt

v2

(8)

where

u1 =
(

0, (a + w2
xy), 2w2

xy, 0
)T

, w1 =
(

−2wxy, 0, 0, wxy(a + w2
xy)

)T

We set C = 0 and D = 0 to switch off the real modes to get bounded solutions for δx

and δy. Finally, the three-dimensional bounded solution to the linear problem Eq. (5)

can be written as

δx = −Ax cos(wxyt + φxy), δy = kAx sin(wxyt + φxy),

δz = Az sin(wzt + φz)
(9)

with k =
a+w2

xy

2wxy
. For the AEPs in this paper, the ratio of in-plane wxy and out of

frequencies wz is not a rational number, so a quasi-periodic Lissajous trajectory can

be obtained as shown in Fig. 3.
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Fig. 3 Lissajous trajectory at AEP r0 = [1.02 0 0]T (beyond L2) in the Sun-Earth system.
Ax = Az = 2.3396 × 10−5(3500 km) and φxy = φz = 0 are chosen for illustration purpose.
The AEP needs a0 = (−0.0512, 0, 0).

4 Nonlinear Approximations

The Lindstedt Poincaré method is used to find periodic approximations to the equations

of motion Eq. (1). In the CRTBP literature, Lindstedt Poincaré [3,5] is used quite

extensively to force the two linear frequencies (wxy and wz) to be equal by contributing

nonlinear terms if the amplitudes Ax and Az of the linear solution are large enough.

The method is based on the assumption that if the nonlinearities are small, then the

frequency of the periodic solution to the nonlinear system is a perturbation of the
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frequency of a periodic solution to the linear system. Therefore, the nonlinearity alters

the frequency from wxy to wxyw. where

w = 1 + ǫw1 + ǫ2w2 + . . . (10)

This frequency correction allows us to remove secular terms through determination of

wi during the development of the approximate periodic solution about AEPs.

A Taylor series expansion of F to third-order [14] about AEP r0 is found by making

the transformation r → r0 + δr, so we have the system of nonlinear equations

δr̈ + 2 ω × δṙ = F (r0) +

(

δr.

[

∂

∂r

]T
)

∇V
∣

∣

∣

r=r0

+
1

2!

(

δr.

[

∂

∂r

]T
)2

∇V
∣

∣

∣

r=r0

+
1

3!

(

δr.

[

∂

∂r

]T
)3

∇V
∣

∣

∣

r=r0

+ O(δr4)

where we have assumed that ∂a0

∂r
, ∂2a0

∂r2 etc., are all zero. So in component form the

equations of motion through third-order are given by

δẍ − 2δẏ − (2c + 1)δx = 3C
(

2δx2 − δy2 − δz2
)

+ 4Dδx(2δx2 − 3δy2 − 3δz2) + O(δr4)

δÿ + 2δẋ + (c − 1)δy = −6Cδxδy

− 3Dδy
(

4δx2 − δy2 − δz2
)

+ O(δr4)

δz̈ + w2
xyδz = −6Cδxδz

− 3Dδz
(

4δx2 − δy2 − δz2
)

+ O(δr4) + ∆δz (11)

where C =
Vxxx|r=r0

12 and D =
Vxxxx|r=r0

48 are evaluated at the AEP r0 = (x0, 0, 0).

Note that the term ∆ = w2
xy − c = w2

xy − w2
z = O(A2

z) = O(ǫ2) is added in the right-

hand-side of the z−equation to force a periodic orbit at linear order with frequency

wxy (this periodic solution is given in Eq. (9) with wz replaced by wxy and acts as a

first approximation).

The following relations exist to switch off the secular term which appear as a result

of successive approximation in the inhomogeneous part of the system of equations of

order O(ǫ2) and O(ǫ3).

w1 = 0, w2 = s1A2
x + s2A2

z

l1A2
x + l2A2

z + ∆ = 0, φz = φxy + nπ/2 n = 1, 3

The expressions for si, li are given in Ref. [5]. The closed orbit corresponding to these

constraints is a halo orbit. Northern halo orbits, whose maximum out-of-plane compo-

nent is above the ecliptic plane, are obtained corresponding to the solution n = 1 and

n = 3 about AEPs near L1 and L2 respectively. The period of the orbit can be found

from the amplitude-frequency relation T = 2π/wxyw, where w = 1 + s1A2
x + s2A2

z .

The minimum in-plane amplitude Axmin =
√

|∆/l1| required to have a halo orbit can

be derived from the above amplitude-constraint relation by substituting Az = 0. The
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complete third-order successive approximation solution of Eq. (11) using the Lindstedt

Poincaré method is given by [5]

δx(t) = −Ax cos τ1 + a21A2
x + a22A2

z + (a23A2
x + ζa24A2

z) cos 2τ1

+ (a31A3
x + ζa32AxA2

z) cos 3τ1

δy(t) = kAx sin τ1 + (b21A2
x + ζb22A2

z) sin 2τ1 + (b31A3
x + ζb32AxA2

z) sin 3τ1

+ (b33A3
x + b34AxA2

z + ζb35AxA2
z) sin τ1

δz(t) = (−1)(n−1)/2Az cos τ1 + (−1)(n−1)/2d21AxAz(cos 2τ1 − 3)

+ (−1)(n−1)/2(d32AzA2
x − d31A3

z) cos 3τ1 (12)

where ζ = (−1)n and τ1 = wxywt + φ. The constants si, li, aij , bij and dij involve C,

D, k and wxy which in turn ultimately depend on r0 and µ. Note that the numerical

values of these constants will be different from that given in [3,5] due to the different

scaled system chosen in nondimensionalization (see Sect. 2). In Eq. (12) the expres-

sion for δy(t) also contains the third-order correction to the amplitude of sin τ1 by

Thurman and Worfolk [5] in Richardson’s original solution [3]. This correction allows

faster convergence of the differential corrector algorithm. Fig. 4 shows that the magni-
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Fig. 4 Period of artificial halo orbit vs AEPs selected at x0 near to (a) L1 and (b) L2 points
in the Sun-Earth system. The dotted curve shows the low-thrust acceleration required at x0

to create AEPs. a0 = 0 at L1 and L2.

tude of the low-thrust acceleration a0 is zero at L1 and L2 and increases to convert a

nonequilibrium point at x0 away from L1 and L2 into an equilibrium point. Artificial

L1 and L2 points are chosen that require a maximum a0 ≈ 0.05 (0.296 mms−2) and

a0 ≈ 0.1 (0.593 mms−2), which corresponds to a thrust of 150 mN and 300 mN for a

500 kg spacecraft. For points inside L1 and beyond L2, the direction of a0 is sunward,

so these periodic artificial halo with a given z−amplitude cannot be generated with a

solar sail.

Fig. 4 also shows that period T = 2π
(1+w2)wxy

of these artificial halo orbits follow

the inverse behaviour of the zero order frequency wxy (see Fig. 5). Fig. 5 shows that the

second order frequency correction to the zero order is very small, or roughly speaking a

maximum < 3.5% frequency correction to the zero order solution (as w1 = 0) for Az =

8.3557×10−4 (125000 km). Fig. 5 also shows that the correction can increase/decrease
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Fig. 5 Zero and second order frequency adjustment (w2) vs AEPs selected at x0 near to (a)
L1 and (b) L2 points in the Sun-Earth system.
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Fig. 6 The minimum x-amplitude to have artificial halo orbits vs AEPs selected at x0 near
to (a) L1 and (b) L2 points.

the period. Fig. 6 shows that the minimum amplitude Axmin =
√

|∆l1 | beyond artificial

L2 points first increases then decreases when a0 exceeds ≈ 0.07 (0.415 mms−2), as at

this point the rate at which
√

∆ decreases becomes more than the rate at which 1√
|l1|

increases. Although in Figs. (4-5) Az is chosen 125000 km, the effect of Az on the

second order frequency correction w2, and so period T is relatively small.

5 Differential Correction and Low-Thrust Halo orbits

We can use the initial guess from Lindstedt Poincaré analysis to integrate the full

nonlinear system of equations Eq. (1) along with the constant low-thrust acceleration

a0 to generate periodic orbits around AEP r0. The trajectory will start looking like a

periodic orbit but will not close as Lindstedt Poincaré method generate (periodic) so-

lutions that are approximations to the periodic solutions of the full nonlinear equations

of motion.
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Fig. 7 Artificial halo orbits are shown in gray around artificial L1 points (n = 1) with
low thrust acceleration vectors a0 = (±0.01, 0, 0) and a0 = (±0.02, 0, 0). The classical halo
orbit is also shown (3rd dark black orbit). All periodic orbits have same Az = 8.3557 ×

10−4(125000 km.)

The nonlinear equations of motion Eq. (1) with constant a0 are symmetric un-

der the transformation y → −y and t → −t, so this symmetry about the xz-plane

suggests we need to determine periodic orbits for a half period T1/2 only. Let X0 =

(x0, 0, z0, 0, ẏ0, 0) be initial data from Lindstedt Poincaré, so the spacecraft leaves per-

pendicularly from the y = 0 plane. On the first return to the y = 0 plane, its state

is

X(T1/2) = (x̃, 0, z̃, ˙̃x, ˙̃y, ˙̃z)

so we have a periodic solution when ˙̃x = ˙̃z = 0.

Let X̄(t) represent the reference solution (known) corresponding to X0. This so-

lution can be used to relate the solution of the perturbed initial state ∆X0 from the

reference solution at t = 0 to its deviation in the final state from the reference solution
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Fig. 8 Artificial halo orbits are shown in gray around artificial L2 points (n = 3) with
low thrust acceleration vectors a0 = (±0.01, 0, 0) and a0 = (±0.02, 0, 0). The classical halo
orbit is also shown (3rd dark black orbit). All periodic orbits have same Az = 8.3557 ×

10−4(125000 km.)

at T1/2 + ∆T1/2 by

∆X(T1/2 + ∆T1/2) =
∂X(T1/2,X0)

∂X0
∆X0 + Ẋ(T1/2)∆T1/2 (13)

The matrix ∂X

∂X0
= Φ is the state transition matrix evaluated along the reference

solution X̄(t). To make ˙̃x = ˙̃z = 0 at y = 0, we vary x0, ẏ0, T1/2 iteratively by

corrections ∆x0, ∆ẏ0 and ∆T1/2 while keeping z0 fixed. These corrections can be

calculated from Eq. (13) explicitly as follows





∆x0

∆ẏ0

∆T1/2



 =





φ21 φ25 ẏ

φ41 φ45 ẍ

φ61 φ65 z̈





−1

t=T1/2





0 − y

0 − ˙̃x

0 − ˙̃z



 (14)

where φij are elements of the matrix Φ at T1/2.
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Figs. (7-8) show numerically generated periodic halo orbits as explained above.

The gray orbits are artificial periodic halo orbits around artificial L1 points (see Fig.

7) and artificial L2 points (see Fig. 8) for low-thrust acceleration values a0 = 0.01 and

a0 = 0.02 with the same Az . The dashed gray orbits have a low-thrust acceleration

vector pointing towards the Sun, so a solar sail cannot generate these periodic artificial

halo orbits.

6 Stable Low-Thrust Halo orbits

So far we have looked for artificial halo orbits around unstable AEPs. The instability

of AEPs implies that artificial halo orbits around these points will also be unstable.

However, a continuation method may be used to generate families of periodic orbit

with large amplitude and move beyond the region where linear terms dominate so we

may find regions of stable halo orbits with low-thrust propulsion.

Given a known periodic solution of Eq. (1) with a known initial condition X0

and parameter of interest (for example Az), then the continuation method computes

the new initial condition to have a periodic orbit for a given fixed new parameter

(Az + ∆Az). The continuation method, particularly relating to classical halo orbits is

discussed in [4,15]. Usually the z− amplitude Az is used as a continuation parameter

and when it reaches an extreme value, the continuation parameter is changed form Az

to Ax. In this paper, we choose the half period T1/2 as a continuation parameter. It is

found that T1/2 provides better convergence accuracy than Az and Ax, the conventional

continuation parameters.

For an accurate given periodic orbit (X0, T1/2), we change the half period from

T1/2 to T ′
1/2 = T1/2 + ∆T1/2. Then we use (X0, T ′

1/2) as initial values for integrating

Eq. (1) and keep the period fixed at T ′
1/2. For a fixed period T ′

1/2, the second term on

the right-hand-side of Eq. (13) vanishes, and so the correction in the initial condition

∆X0 can be calculated as

∆X0 =
∂X(T ′

1/2,X0)

∂X0

∣

∣

∣

−1
∆X(T ′

1/2) (15)

In particular, to ensure y, ˙̃x, ˙̃z are zero at T ′
1/2, we are forced to vary x0, ẏ0 and z0

iteratively by corrections ∆x0, ∆ẏ0 and ∆z0. These corrections can be calculated from

Eq. (15) as follows





∆x0

∆ẏ0

∆z0



 =





φ21 φ25 φ23

φ41 φ45 φ43

φ61 φ65 φ63





−1

t=T ′

1/2





0 − y

0 − ˙̃x

0 − ˙̃z



 (16)

where φij are elements of the matrix Φ at T ′
1/2.

Fig. 9 shows a family of halo orbits about AEPs beyond L2. The period correspond-

ing to this family of orbits (thick solid line) is shown in Fig. 10. For comparison, the

period of classical halo orbits about L2 is also shown. Fig. 11 shows the same family

of orbits (see first plot in Fig. 9) characterized by their maximum x-value xmax and

maximum z-value zmax. Switching from Lindstedt Poincaré analysis at xmax = 1.0126

to continuation method with ∆T1/2 = −0.02 causes gaps in the artificial halo orbits

curves (see Figs. 10-11).
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Fig. 9 Artificial periodic halo orbits in the Sun-Earth system around AEP r0 = (1.01134, 0, 0)
with a0 = (−0.01, 0, 0) pointing towards the Sun. The first five periodic orbits are generated by
using an initial guess from Lindstedt Poincaré. Large amplitude periodic orbits are produced
using the continuation method with ∆T1/2 = −0.02. The dashed line is the stable halo orbit.
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Fig. 10 Half period of classical halo orbits about L2 is shown by the dashed line, and the half
period of artificial halo orbits about AEP r0 = (1.01134, 0, 0) is shown by the thick line.
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Fig. 11 Classical halo orbits about L2 shown by dashed line, and artificial halo orbits about
AEP r0 = (1.01134, 0, 0) with low-thrust acceleration a0 = (−0.01, 0.0). Heavy dots on both
curves corresponds to stable halo orbits.

Table 1 Initial condition for stable orbits with a0 = (−0.01, 0, 0) which corresponds to a
low-thrust acceleration 0.0593 mms−2 and low-thrust force 30 mN for a 500 kg spacecraft.

x0 (×108km) z0 (×106km) ẏ0 (×102m/s) T1/2 (days) C

1.509505487164924 2.158391940114810 -4.177777862144087 73.8218469 -1.49000437
1.509191101130694 2.173171517835050 -4.076979879730191 72.6592201 -1.49000439
1.508857610708376 2.189749813954399 -3.966248219678315 71.4965932 -1.49000442

According to Floquet theory, the first order or linear stability of periodic orbits is

described by the eigenvalues of the monodromy matrix Φ(T ). Let the nonlinear system

Eq. (1) be written as Ẋ = f(X). Since the trace of the Jacobian ∂f

∂X
= 0 [see Eq. (5)],

eigenvalues of the monodromy matrix occur in reciprocal pairs [16]. The system is

autonomous, so it has +1 as an eigenvalue for a periodic orbit[17]. Thus, two of the

eigenvalues of the monodromy matrix are unity, and the stability of the periodic orbit

is given by the complex conjugate eigenvalues on the unit circle in complex plane. For

artificial unstable periodic orbits, the eigenvalues spectrum of the monodromy matrix

is given by

{1, 1, λr, 1/λr, λi, λ̄i} (17)

For stable periodic orbits, the spectrum of the monodromy matrix is described by

{1, 1, λi, λ̄i, λj , λ̄j} (18)

i.e., all eigenvalues lies on the unit circle, and the periodic orbit keeps a halo shape for

large integration times. The initial condition for such stable artificial periodic orbits is

given in Table 1. In the Sun-Earth system, the low-thrust acceleration 0.0593 mm/s2

corresponds to 30 mN thrust for a 500 kg spacecraft. Assuming Isp = 3200 s and

propellant mass percentage of 50%, the propellant will be consumed within 11.5 years.

However, these stable orbits can keep a halo shape for larger integration times i.e, 25

years. Stable halo orbits (shown by dots in Fig. 11) about L2 are between the L2 and

the Earth, while artificial stable orbits in the case of low-thrust propulsion about AEP

r0 = (1.01134, 0, 0) are closer to L2. Although the existence of stable halo orbits for

low-thrust propulsion spacecraft is shown around unstable AEP, the in-depth stability

analysis could be made [18,19], and is left to future work.
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7 Conclusions

We have shown the possibility of generating halo orbits, using near-term electric propul-

sion system in the circular restricted three body problem around nonequilibrium points

by changing these points into equilibrium points with low-thrust acceleration. In par-

ticular halo orbits around nonequilibrium points inside L1 and beyond L2 that require

the low-thrust acceleration directed towards sunward are shown to be feasible with such

low-thrust propulsion. It is therefore impossible for solar sails, to generate these artifi-

cial halo orbits. We have also shown that we may fine tune the initial data provided by

the Lindstedt Poincaré method, for integration of nonlinear equations of motion with

constant continuous low-thrust acceleration, to produce closed orbits around artificial

equilibrium point using a differential corrector. Stable low-thrust halo orbits for a point

beyond L2 are also found using a continuation method, while the continuing parameter

is chosen as the half period of the halo orbit. These stable halo orbits are realizable

with solar electric propulsion and found to be towards L2, while the classical stable

halo orbits around L2 are roughly halfway between the Earth and L2.
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