Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Artificial halo orbits for low-thrust propulsion spacecraft

Baig, Shahid and McInnes, C.R. (2009) Artificial halo orbits for low-thrust propulsion spacecraft. Celestial Mechanics and Dynamical Astronomy, 104 (4). pp. 321-335. ISSN 0923-2958

[img]
Preview
PDF (strathprints008103.pdf)
strathprints008103.pdf

Download (536kB) | Preview

Abstract

We consider periodic halo orbits about artificial equilibrium points near to the Lagrange points L1 and L2 in the circular restricted three-body problem, where the third body is a low-thrust propulsion spacecraft in the Sun-Earth system. Although such halo orbits about artificial equilibrium points can be generated using a solar sail, there are points inside L1 and beyond L2 where a solar sail cannot be placed, so low-thrust, such as solar electric propulsion, is the only option to generate artificial halo orbits around points inaccessible to a solar sail. Analytical and numerical halo orbits for such low-thrust propulsion systems are obtained by using the Lindstedt Poincaré and differential corrector method respectively. Both the period and minimum amplitude of halo orbits about artificial equilibrium points inside L1 decreases with an increase in low-thrust acceleration. The halo orbits about artificial equilibrium points beyond L2 in contrast show an increase in period with an increase in low-thrust acceleration. However, the minimum amplitude first incresaes and then decreases after the thrust acceleration exceeds 0.415 mm/s². Using a continuation method, we also find stable artificial halo orbits which can be sustained for long integration times and require a reasonably small low-thrust acceleration 0.0593 mm/s².