Strathprints logo
Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Comparison of thermal management techniques for semiconductor disk lasers

Giet, S. and Kemp, A. and Burns, D. and Calvez, S. and Dawson, M.D. and Suomalainen, S. and Harkonen, A. and Guina, M. and Okhotnikov, O. and Pessa, M. (2008) Comparison of thermal management techniques for semiconductor disk lasers. Proceedings of SPIE the International Society for Optical Engineering, 6871. p. 687115. ISSN 0277-786X

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Semiconductor Disk Lasers (SDLs) are compact lasers suitable for watt to multi-watt direct generation in the 670- 2350nm waveband and frequency-doubled operation in the ultraviolet and visible regions. This is, however, critically dependent on the thermal management strategy used as, in this type of laser, the pump is absorbed over micrometer lengths and the gain and loss are temperature sensitive. In this paper, we compare the two heat dissipation techniques that have been successfully deployed to-date: the "thin device" approach where the semiconductor active mirror is bonded onto a heatsink and its substrate subsequently removed, and the "heatspreader" technique where a high thermal conductivity platelet is directly bonded onto the active part of the unprocessed epilayer. We show that for SDLs emitting at 1060nm with pump spots of ~80m diameter, the heatspreader approach outperforms the thin-device alternative, with the best results being obtained with a diamond heatspreader. Indeed, the thermal resistances are measured to be 4.9, 10.4 and 13.0 K/W for diamond-bonded, SiC-bonded and flip-chip devices respectively. It is also observed, as expected, that the thermal management strategy indirectly affects the optimum output coupling and thus the overall performance of these lasers.

Item type: Article
ID code: 8078
Notes: No copy uploaded. No references.
Keywords: Optics. Light, Condensed Matter Physics, Electronic, Optical and Magnetic Materials, Electrical and Electronic Engineering, Applied Mathematics, Computer Science Applications
Subjects: Science > Physics > Optics. Light
Department: Faculty of Science > Institute of Photonics
Faculty of Science > Physics
Related URLs:
    Depositing user: Miss Lisa Flanagan
    Date Deposited: 21 Oct 2009 17:22
    Last modified: 28 Mar 2014 05:09
    URI: http://strathprints.strath.ac.uk/id/eprint/8078

    Actions (login required)

    View Item