Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

A control volume based formulation of the discrete Kirchoff triangular thin plate bending element

Beveridge, Andrew J. and Wheel, M. (2009) A control volume based formulation of the discrete Kirchoff triangular thin plate bending element. In: The 17th UK National Conference on Computational Mechanics in Engineering, 2009-04-06 - 2009-04-08.

[img]
Preview
PDF (strathprints008067.pdf)
strathprints008067.pdf

Download (83kB) | Preview

Abstract

A control volume method is presented for predicting the displacement and rotation of thin transversely loaded flat plates. The new procedure uses discrete Kirchoff triangle (DKT) elements but introduces a dual mesh of interconnected control volumes (CVs) centred on the finite element (FE) vertices. Discrete equations for the unknown degrees of freedom are subsequently derived by enforcing equilibrium on these CVs; as such this implementation is a quadrature free routine. To allow a comparison, a quadrature free implementation of the DKT element, using the standard finite element procedure, was developed using symbolic methematics. The CV based procedure is validated by patch tests for a state of pure bending and twist. Convergence tests for various loading types show enhanced performance for coarse meshes over the equivalent FE method.