Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

The geometry of optimal control problems on some six dimensional lie groups

Biggs, James D. and Holderbaum, William (2006) The geometry of optimal control problems on some six dimensional lie groups. In: 44th IEEE Conference on Decision and Control/European Control Conference, 2005-12-12, Seville, Spain.

[img]
Preview
PDF (strathprints008059.pdf)
Download (391Kb) | Preview

    Abstract

    This paper examines optimal solutions of control systems with drift defined on the orthonormal frame bundle of particular Riemannian manifolds of constant curvature. The manifolds considered here are the space forms Euclidean space E3 , the spheres S3 and the hyperboloids H3 with the corresponding frame bundles equal to the Euclidean group of motions SE(3), the rotation group SO(4) and the Lorentz group SO(1,3). The optimal controls of these systems are solved explicitly in terms of elliptic functions. In this paper, a geometric interpretation of the extremal solutions is given with particular emphasis to a singularity in the explicit solutions. Using a reduced form of the Casimir functions the geometry of these solutions are illustrated.

    Item type: Conference or Workshop Item (Paper)
    ID code: 8059
    Keywords: geometry, optimal control problems, six dimensional lie groups, control systems, Mechanical engineering and machinery, Motor vehicles. Aeronautics. Astronautics, Physics
    Subjects: Technology > Mechanical engineering and machinery
    Technology > Motor vehicles. Aeronautics. Astronautics
    Science > Physics
    Department: Faculty of Engineering > Mechanical and Aerospace Engineering
    Related URLs:
      Depositing user: Ms Katrina May
      Date Deposited: 05 Jun 2009 13:41
      Last modified: 05 Oct 2012 11:09
      URI: http://strathprints.strath.ac.uk/id/eprint/8059

      Actions (login required)

      View Item

      Fulltext Downloads: