Picture of Open Access badges

Discover Open Access research at Strathprints

It's International Open Access Week, 24-30 October 2016. This year's theme is "Open in Action" and is all about taking meaningful steps towards opening up research and scholarship. The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Explore recent world leading Open Access research content by University of Strathclyde researchers and see how Strathclyde researchers are committing to putting "Open in Action".


Image: h_pampel, CC-BY

Bayesian analysis of stochastic frontier models

Koop, Gary and Steel, Mark F.J. (2001) Bayesian analysis of stochastic frontier models. In: A Companion to Theoretical Econometrics. Blackwell, pp. 520-537. ISBN 063121254X

Full text not available in this repository. (Request a copy from the Strathclyde author)


In this chapter, we described a Bayesian approach to efficiency analysis using stochastic frontier models. With cross-sectional data and a log-linear frontier, a simple Gibbs sampler can be used to carry out Bayesian inference. In the case of a nonlinear frontier, more complicated posterior simulation methods are necessary. Bayesian efficiency measurement with panel data is then discussed. We show how a Bayesian analogue of the classical fixed effects panel data model can be used to calculate the efficiency of each firm relative to the most efficient firm. However, absolute efficiency calculations are precluded in this model and inference on efficiencies can be quite sensitive to prior assumptions. Accordingly, we describe a Bayesian analogue of the classical random effects panel data model which can be used for robust inference on absolute efficiencies. Throughout, we emphasize the computational methods necessary to carry out Bayesian inference. We show how random number generation from well-known distributions is sufficient to develop posterior simulators for a wide variety of models.