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Abstract—In this paper we study constrained optimal control
problems on semi-simple Lie groups. These constrained optimal
control problems include Riemannian, sub-Riemannian, elastic
and mechanical problems. We begin by lifting these problems,
through the Maximum Principle, to their associated Hamilto-
nian formalism. As the base manifold is a Lie group G the
cotangent bundle is realized as the direct product G×g∗ where
g∗ is the dual of the Lie algebra g of G. The solutions to these
Hamiltonian vector fields l ∈ g∗, are called extremal curves and
the projections g(t)∈G are the corresponding optimal solutions.
The main contribution of this paper is a method for deriving
explicit expressions relating the extremal curves l ∈ g∗ to the
optimal solutions g(t)∈G for the special cases of the Lie groups
SO(4) and SO(1,3). This method uses the double cover property
of these Lie groups to decouple them into lower dimensional
systems. These lower dimensional systems are then solved in
terms of the extremals using a coordinate representation and the
systems dynamic constraints. This illustrates that the optimal
solutions g(t) ∈ G are explicitly dependent on the extremal
curves.

I. INTRODUCTION

Affine control systems defined on finite-dimensional Lie

groups form an important class of nonholonomic system and

provide a mathematically rich setting for studying kinematic

control systems [1], [2], [3], quantum control systems [4],[5]

and relativistic systems [6]. The motion planning problem

for such systems can be solved using optimal control theory

and it follows that such problems are inseparable from

problems in geometry, including the sub-Riemannian and

elastic problems on the frame bundles of the planar forms

[7], [8] and [9] and on the frame bundles of the space forms

[10] and [11]. Each of these problems can formulated as

a constrained optimal control problem. We begin here by

giving a general statement of the motion planning problem:

Problem Statement 1: The motion planning problem con-

cerns the solutions g(t) ∈ G of the left-invariant differential

system:
dg(t)

dt
= g(t)(

s

∑
1

uiAi) (1)

that minimize the expression:

f0 =
1

2

∫ T

0
〈u(t),Qu(t)〉dt (2)

subject to the given boundary conditions g(0) = g0 and

g(T ) = gT , A1, ...,As are given elements of the n-dimensional
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Lie algebra g of G and where Q is a positive definite (s× s)
matrix.

The motion planning problem can be naturally viewed as

an optimal control problem with u(t) = (u1, ...,us) playing

the role of control functions, which are assumed to be

measurable and bounded throughout this paper. s is the

number of controls which can be less than or equal to n.

When s is equal to n, Problem Statement 1, is known as

the Riemannian problem. In the case where s is less than n

the kinematic system is said to be underactuated. It follows

that when n > s, Problem Statement 1 describes the motion

planning problem for underactuated kinematic systems on

Riemannian manifolds, known as the Sub-Riemannian prob-

lem, which has been studied in [3], [12]. Additionally, such a

problem statement can be slightly modified to include elastic

and mechanical problems as will be shown. The Maximum

Principle of optimal control (see [13],[11]) then identifies the

appropriate Hamiltonian H on the dual of the Lie algebra g∗

of the Lie algebra G. For such problems, the solutions to

the Hamiltonian vector fields called extremals are elements

of g∗. It follows that each optimal solution g(t) ∈ G is the

projection of the extremal curves, confined to elements of

the dual of the Lie algebra. Although, in this paper we do

not explicitly solve the extremal solutions as these will be

problem specific, we provide a method relating the extremal

solutions to the corresponding solution curves g(t) ∈ G for

all systems of this form on SO(4) and SO(1,3). Applications

motivating the study of Hamiltonian systems on Lie groups

is the motions of relativistic particles [6] and applications of

quantum control on SO(4) [5].

SO(4) and SO(1,3) are semi-simple Lie groups denoted G

(see [14] for general definitions) and are the orthonormal

frame bundles of the 3-dimensional non-Euclidean space

forms, the sphere S
3 and Hyperboloid H

3. The sphere S
3 is

a Riemannian manifold with its Riemannian metric inherited

from the standard Euclidean metric in R
4. The Riemannian

metric on H
3 is inherited from the Lorentzian inner product:

〈x,y〉 = −x1y1 + x2y2 + x3y3 + x4y4 (3)

In [15] a method for integrating these systems where the

controls are time-independent is given. This paper extends

this integration procedure to systems with time-dependent

controls by additionally considering the lift of the control

system to its appropriate Hamiltonian vector fields. The paper

is divided into 3 sections which are summarized as follows:

• Section II - the optimal control problem of minimizing

(2) subject to the kinematic constraint (1) is lifted to

its corresponding Hamiltonian vector fields, which for



semi-simple Lie groups can be expressed in Lax Pair

form.

• Section III- we specialize to the case for problems

defined on SO(4) and SO(1,3), which have unique

double cover properties that allow them to be mapped

isomorphically to lower dimensional decoupled systems.

These decoupled systems can then be solved explicitly.

• Section IV - the decoupled systems are solved using

a coordinate representation and exploiting a geometric

constraint of the system. The solutions to the decoupled

system are then projected back onto SO(4) and SO(1,3),
to obtain the solutions g(t)∈G in terms of the extremal

curves.

we complete this introduction by extending the motion

planning problem (Problem Statement 1), to include elastic

and mechanical problems.

To incorporate systems with drift any of the controls ui can

be set to a constant in Problem Statement 1. Such problems

are common in applications, for example gravity induces a

drift effect. Such problems are inseparable from problems in

geometry, for example, a particular optimal control problem

subject to a kinematic constraint with drift is known as the

elastic problem, as highlighted in [1]. Following the Cartan

decomposition the Lie algebra can be split into the factors p

and k satisfying the classic relations

g = p⊕ k, [k,k] ⊆ k, [p,k] ⊆ p, [p,p] ⊆ k (4)

the elastic problem is concerned with a left-invariant metric

defined on k. More explicitly following the Cartan decom-

position, the constraint (1) can be expressed as:

g(t)−1 dg(t)

dt
=

m

∑
i=1

Aiui +
n

∑
m+1

Aiui (5)

where n is the dimension of g, m is the dimension of p and

(n−m+1) is the dimension of k and

m

∑
i=1

Aiui ∈ p

n

∑
m+1

Aiui ∈ k

(6)

Following, the definition in [9], Riemannian problems are

defined by a metric on the Lie algebra g and the elastic

problem is defined by a partial metric on k. For this class of

problem take a fixed element A∈ p i.e. u1, ...,um are constant

and consider all absolutely continuous curves g(t) ∈ G that

satisfy g−1 dg
dt
−A∈ k for almost all t in an interval [0,T ] and

which satisfy the boundary conditions g(0) = g0 and g(T ) =
g1. Then the elastic problem in [9] considers the problem

of minimizing the integral 1
2

T
∫

0

〈

g−1 dg
dt
−A,Dg−1 dg

dt
−A

〉

dt,

where D is a positive definite matrix. Therefore, Problem

Statement 1 can be specified as the elastic problem:

Problem Statement 2: The elastic problem is concerned

with the solutions g(t) ∈ G of the left-invariant differential

system:

g(t)−1 dg(t)

dt
= A+

n

∑
m+1

Aiui (7)

that minimize the expression:

f0 =
1

2

T
∫

0

〈

n

∑
m+1

Aiui,D
n

∑
m+1

Aiui

〉

dt (8)

subject to the given boundary conditions g(0) = g0 and

g(T ) = gT , where Am+1, ...,An is the standard basis of k and

A∈ p is a constant element and where D is a positive definite

(n−m+1)× (n−m+1) matrix.

The constrained optimal control problem also includes all

mechanical problems through the Lagrange Principle of least

action where we minimize the function f0 =
T
∫

0

L(t)dt subject

to the kinematic constraint (1), where L(t) is the Lagrangian

of the system. In the case where the controls take the form

of components of translational and angular velocities, the

Hamiltonian lift will yield the dynamic equations of motion.

This method of formulating the dynamics as a constrained

optimal control problem is used to derive the dynamic

equations of a rigid body in [16].

II. THE LAX PAIR EQUATIONS

A. Lax Pair equations on semi-simple Lie groups

The Maximum Principle of optimal control identifies the

appropriate left-invariant Hamiltonian on the dual of the

Lie algebra. The solutions to these integrable Hamiltonian

vector fields are called extremals. The projected extremal

solutions down to the level of the group are called optimal

solutions. The solutions g(t)∈G of (1) while minimizing the

expression (2) are locally optimal, that is optimal for small

terminal time T [11], however as the terminal time grows

they may stop being optimal. For simplicity of terminology

we will refer to all projections as the optimal solutions even

though the nature of cut-locus and conjugate points have

not been considered, see [11]. The parameterized control

Hamiltonian corresponding to the state space (1) while

minimizing the function (2) is written as (see [3]):

H(ξ ,u,g) =
n

∑
i=1

uiξ (gAi)−ρ0

n

∑
i=1

ciu
2
i (9)

where ξ ∈ T ∗
g G and ρ0 = 1 for regular extremals and ρ0 = 0

for abnormal extremals. The ci’s are constants dependent on

the positive definite matrix Q or D in the elastic case. In this

paper we shall only consider the regular extremals. As the

vector fields are left invariant they can be pulled back by

the left group action. The pull-back in this case is explicitly

stated as ξ (·) = p̂(g−1(·)). i.e ξ ∈ T ∗G is pulled back to

give a function p̂ ∈ g∗. The control Hamiltonian can then be

written as

H(p̂,u) =
3

∑
i=1

ui p̂(Ai)−
3

∑
i=1

ciu
2
i (10)

Through the Maximum principle of optimal control and the

fact that the control Hamiltonian is a concave function of the

control functions ui, it follows by calculating ∂H
∂ui

= 0 that the

optimal controls are given in feedback form:

u∗i =
1

ci
p̂(Ai) (11)



where i= 1,2,3. Then substituting (11) back into (10) gives

the optimal Hamiltonian H(p̂,u∗) which will be denoted as

H for simplicity. Define the extremal solutions Mi = p̂(Ai).
From this the Hamiltonian vector fields can be calculated

using the Poisson bracket:

{Mi,M j} = −p̂([Ai,A j]) (12)

Let l(t) ∈ g∗ where the coordinates of l are M1, ...,Mi then

the Hamiltonian vector fields can be written in compact form

as:
dl(t)

dt
= {l(t),H} (13)

on semi-simple Lie groups each element in g∗ can be

uniquely identified with an element in g via the non-

degenerate trace form, called the Killing form, which implies

that the element l(t) ∈ g∗ can be identified with an element

L(t) ∈ g i.e. following the notation of [3], L(t) = l(t)♯ where

♯ is the sharp operator. It follows that the equation (13) can

be expressed in Lax pair form as:

L̇(t) = [L(t),∇H] (14)

where ∇H ∈ g is the gradient of the function H. In addition

to this equation, substituting the optimal controls (11) into

(1) gives
dg(t)

dt
= g(t)∇H (15)

The equations (14) and (15) are the equations of motion

for problems including Riemannian, sub-Riemannian, elastic

and mechanical problems, where each problem differs by

the appropriate left-invariant Hamiltonian H. This paper is

concerned with the solutions g(t) ∈ G of (14) and (15) for

particular semi-simple Lie groups. The equations (14) and

(15) can represent the equations for the Riemannian, sub-

Riemannian, elastic and mechanical problems, where the

equations differ by their appropriate Hamiltonian H.

B. The Lax Pair Equations on SO(4) and SO(1,3)

Here we proceed to study two particular systems of the

form (14) and (15) whose solutions are curves in the semi-

simple Lie groups g(t) ∈ SO(4) and g(t) ∈ SO(1,3). Firstly,

we define a basis for the Lie algebras of SO(4) and SO(1,3)
as:

A1 =









0 0 0 0

0 0 0 0

0 0 0 −1

0 0 1 0









,A2 =









0 0 0 0

0 0 0 1

0 0 0 0

0 −1 0 0









A3 =









0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0









,B1 =









0 −ε 0 0

1 0 0 0

0 0 0 0

0 0 0 0









B2 =









0 0 −ε 0

0 0 0 0

1 0 0 0

0 0 0 0









,B3 =









0 0 0 −ε
0 0 0 0

0 0 0 0

1 0 0 0









(16)

such that when ε = 1, the basis elements Ai,Bi ∈ so(4)
and when ε = −1, Ai,Bi ∈ so(1,3). Then on defining the

extremals as pi = p̂(Bi) and Mi = p̂(Ai), the corresponding

Lax Pair elements in equations (14) and (15) are explicitly:

∇H =











0 −ε ∂H
∂ p1

−ε ∂H
∂ p2

−ε ∂H
∂ p3

∂H
∂ p1

0 − ∂H
∂M3

∂H
∂M2

∂H
∂ p2

∂H
∂M3

0 − ∂H
∂M1

∂H
∂ p3

− ∂H
∂M2

∂H
∂M1

0











(17)

and

L(t) =









0 −ε p1 −ε p2 −ε p3

p1 0 −M3 M2

p2 M3 0 −M1

p3 −M2 M1 0









(18)

Then g(t) ∈ G is the solution to equations (14) and (15)

where G = SO(4) for ε = 1 and G = SO(1,3) for ε =
−1. These equations include Riemannian, sub-Riemannian,

elastic and mechanical problems, where the equations only

differ by their appropriate Hamiltonian. For example the

Hamiltonian for the elastic problem in [17] i.e the Hamil-

tonian corresponding to Problem Statement 2 on SO(4) and

SO(1,3) is:

H = p1 +

(

M2
1

c1
+

M2
2

c2
+

M2
3

c3

)

(19)

where ci are constant entries of the (n− m + 1) × (n−
m+ 1) matrix D and the Hamiltonian for a particular sub-

Riemannian problem (i.e. when the metric is defined on p),

would for example be:

H =
1

2

(

p2
1

m1
+

p2
2

m2
+

p2
3

m3

)

(20)

where mi are the constant entries of the positive definite (s×
s) matrix Q, finally the Hamiltonian for a rigid body defined

on these Lie Groups, whose Lagrangian is defined entirely

by it’s kinetic energy i.e.

L(t) =
3

∑
i=1

miv
2
i +

3

∑
i=1

ciΩ
2
i (21)

where vi are the components of translational velocity, Ωi are

the components of angular velocity, mi the components of

mass and ci the components of inertia. Taking the angular

and translational velocities to be the control functions, it

follows from an application of the Maximum Principle that

the appropriate energy Hamiltonian is:

H =
3

∑
i=1

p2
i

mi

+
3

∑
i=1

M2
i

ci
(22)

where pi are analogous to the components of translational

momentum, Mi to the components of angular momentum.



III. DECOUPLING THE SYSTEM

In this section the system described by equations (14) and

(15) defined on SO(4) and SO(1,3) are decoupled into two

lower dimensional systems. This decoupling then allows us

to compute the solutions of the decoupled systems using a

simple technique. The solutions of the decoupled systems can

then be projected back onto the original manifold to yield

the solution to the original system (14) and (15) on SO(4)
and SO(1,3). We begin here by describing the decoupling

of the system defined on SO(4).

A. Decoupling the system on SO(4)

The system defined by the differential equations (14) and

(15) on SO(4) can be decoupled into two lower dimensional

systems. The decoupling is possible as the Lie algebra so(4)
is isomorphic to su(2)×su(2) and an element A∈ so(4) can

be identified with the elements (V1,V2)∈ su(2)×su(2) using

the theorem from [15] which is stated below:

Theorem 1: so(4) is isomorphic to su(2)×su(2) where an

element A ∈ so(4) is associated with the elements (V1,V2) ∈
su(2)× su(2) via the following mapping:

A 7→ (V1,V2) =








0 −b1 −b2 −b3

b1 0 −a3 a2

b2 a3 0 −a1

b3 −a2 a1 0









7→
1

2

(

(a1 +b1)i (a2 +b2)+(a3 +b3)i
−(a2 +b2)+(a3 +b3)i −(a1 +b1)i

)

,
1

2

(

(a1 −b1)i (a2 −b2)+(a3 −b3)i
−(a2 −b2)+(a3 −b3)i −(a1 −b1)i

)

(23)

where a1,a2,a3,b1,b2,b3 ∈ R

For simplicity of exposition define the basis:

E1 =

(

i 0

0 −i

)

,E2 =

(

0 1

−1 0

)

,E3 =

(

0 i

i 0

)

(24)

then the Lax pair elements defined on su(2) can be expressed

in the general form:

L(t) =
1

2

(

l1i l2 + l3i

−l2 + l3i −l1i

)

(25)

where l1, l2, l3 ∈ R and

∇H =
1

2

(

x1i x2 + x3i

−x2 + x3i −x1i

)

(26)

and x1,x2,x3 ∈ R then it follows from Theorem 2, that the

system defined by (14) and (15) on SO(4) can be decoupled

into a system on SU(2) × SU(2) where (g1(t),g2(t)) ∈
SU(2)×SU(2) are the solutions of the following differential

equations:

dg1(t)

dt
= g1(t)∇H1

dL1(t)

dt
= [L1(t),∇H1]

dg2(t)

dt
= g2(t)∇H2

dL2(t)

dt
= [L2(t),∇H2]

(27)

where

L1(t) =
1

2

(

l1i l2 + l3i

−l2 + l3i −l1i

)

(28)

with:

l1 = (M1 + p1)

l2 = (M2 + p2)

l3 = (M3 + p3)

(29)

and

L2(t) =
1

2

(

l1i l2 + l3i

−l2 + l3i −l1i

)

(30)

with:

l1 = (M1 − p1)

l2 = (M2 − p2)

l3 = (M3 − p3)

(31)

and

∇H1 =
1

2

(

x1i x2 + x3i

−x2 + x3i −x1i

)

(32)

with:

x1 =
∂H

∂M1
+

∂H

∂ p1

x2 =
∂H

∂M2
+

∂H

∂ p2

x3 =
∂H

∂M3
+

∂H

∂ p3

(33)

and finally

∇H2 =
1

2

(

x1i x2 + x3i

−x2 + x3i −x1i

)

(34)

with:

x1 =
∂H

∂M1
−

∂H

∂ p1

x2 =
∂H

∂M2
−

∂H

∂ p2

x3 =
∂H

∂M3
−

∂H

∂ p3

(35)

The decoupled systems can then be integrated using a simple

technique which will be described in the following section.



B. Decoupling the system on SO(1,3)

The system described by equation (14) and (15) on

SO(1,3) is decoupled into two lower dimensional systems.

This decoupling is performed by using the theorem outlined

in [15] which is stated below

Theorem 2: so(1,3) is isomorphic to sl2(C) where an

element A ∈ so(1,3) is identified with the elements (U,U∗)
where U,U∗ ∈ sl2(C) via the following mapping:

A 7→ (U,U∗) =








0 b1 b2 b3

b1 0 −a3 a2

b2 a3 0 −a1

b3 −a2 a1 0









7→
1

2

(

(ia1 +b1) (a2 +b3)+ i(a3 −b2)
(b3 −a2)+ i(a3 +b2) −(ia1 +b1)

)

,
1

2

(

(b1 − ia1) (b3 −a2)− i(a3 +b2)
(b3 +a2)− i(a3 −b2) −(b1 − ia1)

)

(36)

where a1,a2,a3,b1,b2,b3 ∈ R and the ∗ notation denotes the

conjugate transpose.

Then the equations (14) and (15) can be decoupled into two

systems in a similar manner to the system on SO(4). The

solutions of these systems are called g3(t) and g∗3(t). In this

case g3(t) = g3(0)exp(Ut) and g∗3(t) = g∗3(0)exp(U∗t) are

explicitly related by the conjugate transpose and therefore,

reduces computation since we only need to solve for g3(t).
In addition we can express the equations on sl2(C) in the

basis of (24) and then it is a matter of solving the differential

equations:

dg3(t)

dt
= g3(t)∇H3

dL3(t)

dt
= [L3(t),∇H3]

(37)

where

L3(t) =
1

2

(

l1i l2 + l3i

−l2 + l3i −l1i

)

(38)

with:
l1 = M1 − ip1

l2 = M2 − ip2

l3 = M3 − ip3

(39)

and

∇H3 =
1

2

(

x1i x2 + x3i

−x2 + x3i −x1i

)

(40)

with

x1 =
∂H

∂M1
− i

∂H

∂ p1

x2 =
∂H

∂M2
− i

∂H

∂ p2

x3 =
∂H

∂M3
− i

∂H

∂ p3

(41)

This decoupling has therefore greatly simplified the integra-

tion procedure.

IV. THE INTEGRATION PROCEDURE

We assume that the extremal curves pi,Mi ∈ g∗ have

been solved (either explicitly e.g for the elastic problem

in [17] or numerically for Kirchhoff’s equations in [?]).

This section derives equations relating the extremal curves

l ∈ g∗ to the optimal solutions of the decoupled systems

g1(t),g2(t),g3(t),g
∗
3(t). Each of the decoupled equations in

(27) and (37) can be expressed in the form (14) and (15),

where the Lax pair L(t) and ∇H are defined by (25) and

(26) respectively. To solve for g(t) ∈G, we make use of the

following theorem:

Theorem 3: The general solution to the differential equa-

tion (14) can be expressed as

L(t) = g(t)−1L(0)g(t) (42)

where L(0) is the L(t) matrix at t = 0 and is therefore a

matrix with constant entries

Proof. Firstly, recall that if g(t) ∈ G is a solution to the

differential equation (15), then g(t)−1 ∈ G is a solution to

(see [11]):

dg(t)−1

dt
= −∇Hg(t)−1 (43)

then it follows on differentiating (42) that:

dL(t)

dt
=

dg(t)−1

dt
L(0)g(t)+g(t)−1L(0)

dg(t)

dt
(44)

and on substituting (15) and (43) into (44) yields:

dL(t)

dt
= −∇Hg(t)−1L(0)g(t)+g(t)−1L(0)g(t)∇H

= L(t)∇H−∇HL(t)

= [L(t),∇H]

(45)

¤.

It follows from (42) that as g(t) varies, g(t)L(t)g(t)−1

describes the conjugacy class of L(t) which is equal to the

constant matrix L(0). As a consequence of this the trace

power of L j(t) must be a constant of motion or equivalently,

the coefficients of the characteristic polynomial of L(t) must

be a constant of motion. From here on we specialize to the

case where L(t) is defined by equation (25). Therefore, we

can define a constant K by the following formula:

K2 = −2trace(L(t)2) = l21 + l22 + l23 (46)

it follows that g(t)L(t)g(t)−1 can be diagonalized under

suitable conjugation such that

g(t)L(t)g(t)−1 =
K

2
E1 (47)

Integrating the system with respect to the particular solution

(47) greatly simplifies the integration procedure as is now

shown.



A. Explicit Solutions

To integrate the system coordinates are introduced for

g(t) ∈ G. We shall use ϕ1,ϕ2,ϕ3 to denote the coordinates

of a point g(t) subject to the equation:

g(t) = exp(
1

2
ϕ1E1)exp(

1

2
ϕ2E2)exp(

1

2
ϕ3E1) (48)

where E1 and E2 are as in (24). Assume now that K is non-

zero. It follows from (47) that:

L(t) =
K

2
g−1(t)E1g(t) (49)

and substituting (48) into (49) yields:

L(t) =
K

2
e−

1
2E1ϕ3e−

1
2E2ϕ2E1e

1
2E2ϕ2e

1
2E1ϕ3 (50)

It follows after simplification that

L(t) =
iK

2

(

cosϕ2 e−iϕ3 sinϕ2

eiϕ3 sinϕ2 −cosϕ2

)

(51)

Then equating this to (25) gives

l1 = K cosϕ2 (52)

and furthermore

l2 + il3 = iKe−iϕ3 sinϕ2

−l2 + il3 = iKeiϕ3 sinϕ2

(53)

from (52) it is easily shown that:

sinϕ2 =

√

K2 − l1
2

K
(54)

substituting equation (54) into the equations (53) then adding

the two equations and simplifying gives:

cosϕ3 =
l3

√

K2 − l1
2

(55)

following the same procedure but subtracting one equation

from another in (53) yields:

sinϕ3 =
l2

√

K2 − l1
2

(56)

It remains to solve for ϕ1. Using the coordinate representa-

tion of g(t) as (48) and substituting into g(t)−1 dg(t)
dt

to obtain

a coordinate representation of the equation (14) yields:

g(t)−1 dg(t)

dt
=

ϕ̇1

2

(

icosϕ2 ie−iϕ3 sinϕ2

ieiϕ3 sinϕ2 −icosϕ2

)

+
ϕ̇2

2

(

0 e−iϕ3

−eiϕ3 0

)

+
ϕ̇3

2

(

i 0

0 −i

)

= ∇H

(57)

then equating (57) to ∇H in (26) yields:

x1 = ϕ̇1 cosϕ2 + ϕ̇3 (58)

and
x2 + ix3 = ϕ̇1ie

−iϕ3 sinϕ2 + ϕ̇2e
−iϕ3

−x2 + ix3 = ϕ̇1ie
iϕ3 sinϕ2 − ϕ̇2e

iϕ3
(59)

the two equations in (59) can be rearranged to give:

x2

e−iϕ3
+

ix3

e−iϕ3
= ϕ̇1isinϕ + ϕ̇2

−
x2

eiϕ3
+

ix3

eiϕ3
= ϕ̇1isinϕ − ϕ̇2

(60)

then adding the two equations in (60) yields:

x2

e−iϕ3
−

x2

eiϕ3
+

ix3

eiϕ3
+

ix3

e−iϕ3
= 2ϕ̇1isinϕ

2
(61)

on substituting the expressions (53) into (61) and simplifying

we obtain:

ϕ̇1 = K

(

x2l2 + x3l3

l22 + l23

)

(62)

Therefore, all the coordinates ϕ1,ϕ2,ϕ3 have been solved.

To write g(t) in a compact form we calculate (48) explicitly,

which yields:

g(t) =

(

e
1
2 iϕ1e

1
2 iϕ3 cos

ϕ2
2

e
1
2 iϕ1e−

1
2 iϕ3 sin

ϕ2
2

−e−
1
2 iϕ1e

1
2 iϕ3 sin

ϕ2
2

e−
1
2 iϕ1e−

1
2 iϕ3 cos

ϕ2
2

)

(63)

then using the identities:

cos
ϕ2

2
=

√

1+ cosϕ2

2

sin
ϕ2

2
=

√

1− cosϕ2

2

e±
1
2 iϕ3 = (cosϕ3 ± sinϕ3)

1/2

(64)

it follows from substituting (52), (55) and (56) into (64) that:

cos
ϕ2

2
=

√

K+ l1

2K

sin
ϕ2

2
=

√

K− l1

2K

e±
1
2 iϕ3 =

(l3 ± l2)
1/2

(

K2 − l21

)1/4

(65)

additionally ϕ̇1 defined by (62) can be integrated and e
1
2 iϕ1

and e−
1
2 iϕ1 can be computed and substituted along with (65)

into (63) which yields a simple expression for g(t):

g(t) =
1

(K2 − l21)1/4(2K)1/2
×

(

e
1
2 iϕ1

√

(l3 + l2)(K+ l1) e
1
2 iϕ1

√

(l3 − l2)(K− l1)

−e−
1
2 iϕ1

√

(l3 + l2)(K− l1) e−
1
2 iϕ1

√

(l3 − l2)(K+ l1)

)

(66)

Therefore, all the solutions g1(t),g2(t) ∈ SU(2) and

g3(t),g
∗
3(t) ∈ SL2(C) of the decoupled systems can be ex-

pressed explicitly in terms of the extremal curves.

B. Projecting the decoupled system back onto the original

system

The preceding argument illustrates that a control system

defined on SO(4) and SO(1,3) and its Hamiltonian lift can be

decoupled and solved. However, it is necessary to reconstruct

the solutions on the original Lie groups from the solutions



of the decoupled systems. This reconstruction is performed

in the form of a projection detailed in the paper [15]. For

completeness we illustrate the main results:

1) Projecting back onto SO(4): Let us define the set:

X =

{(

x0 + ix1 x2 + ix3

−x2 + ix3 x0 − ix1

)

: x0,x1,x2,x3 ∈ R

}

(67)

then for any element ẑ ∈ R
4 associate an element Z ∈ X via

the mapping:

ẑ =









z0

z1

z2

z3









→ Z =

(

z0 + iz1 z2 + iz3

−z2 + iz3 z0 − iz1

)

(68)

where z0,z1,z2,z3 ∈ R and define a second element, for

simplicity of exposition, as ŵ ∈ R
4 associated to W ∈ X in

the same way as equation (68):

ŵ =









w0

w1

w2

w3









→W =

(

w0 + iw1 w2 + iw3

−w2 + iw3 w0 − iw1

)

(69)

where w0,w1,w2,w3 ∈ R then define the homomorphism Φ :

SU(2)×SU(2) → SO(4) by:

Theorem 4: The homomorphism Φ : SU(2) × SU(2) →
SO(4) is defined through the following equivalent group

actions:

g(t)ẑ = ŵ (70)

for g(t) ∈ SO(4) if and only if

g1(t)Zg
−1
2 (t) =W (71)

where g1(t),g2(t) ∈ SU(2).

Proof. see [10] and [14]. Using this Theorem we can

construct a closed form solution g(t) ∈ SO(4) from the

closed form solutions g1(t),g2(t) ∈ SU(2), firstly note that

g1(t),g2(t) ∈ SU(2) can be projected onto R
4 following the

equations (71) and (69). Expressing these two equations as

one projection yields:

g1(t)Zg
−1
2 (t) =W 7→ ŵ ∈ R

4 (72)

using the projection (72) and the equivalence of the group

actions (70) and (71) implies that the solution g(t) ∈ SO(4)
can be constructed by associating the first column of g(t) ∈
SO(4) which we call ŵ1 with the first basis element of the

orthonormal frame
[

1 0 0 0
]T

∈ R
4 via the projec-

tion:

ŵ1 = g(t) ·
[

1 0 0 0
]T

with the first basis element of the orthonormal frame in X

(67):

g1(t)

(

1 0

0 1

)

g−1
2 (t) =W1 → ŵ1

in the same manner it follows that the remaining columns of

SO(4) are identified with:

g1(t)

(

i 0

0 −i

)

g−1
2 (t) =W2 → ŵ2

g1(t)

(

0 1

−1 0

)

g−1
2 (t) =W3 → ŵ3

g1(t)

(

0 i

i 0

)

g−1
2 (t) =W3 → ŵ4

(73)

where

g(t) =
(

ŵ1 ŵ2 ŵ3 ŵ4

)

(74)

This can be expressed explicitly but due to space constraints

cannot be written in its most complete form here. This

section has provided a method for integrating control systems

defined on the Lie group SO(4) where the controls are time-

dependent.

2) Projecting back onto SO(1,3): In a similar manner to

(IV-B.1) define a set of matrices X such that:

X =

{(

x0 + x1 x3 − ix2

x3 + ix2 x0 − x1

)

: x0,x1,x2,x3 ∈ C

}

(75)

this is the real vector space of Hermitian 2×2 matrices, in

addition let V−1 denote the real linear space spanned by the

basis ie0,e1,e2,e3. For any element ẑ = z0ie0 + z1e1 + z2e2 +
z3e3 in V−1, with z0,z1,z2,z3 ∈ C is associated to Z ∈ X via

the mapping:

ẑ =









z0

z1

z2

z3









→ Z =

(

z0 + z1 z3 − iz2

z3 + iz2 z0 − z1

)

(76)

and for simplicity of exposition define a second element ŵ∈
V−1 associated to W ∈ X via the mapping:

ŵ =









w0

w1

w2

w3









→W =

(

w0 +w1 w3 − iw2

w3 + iw2 w0 −w1

)

(77)

then the mapping Φ : SL2(C) → SO(1,3) is defined as:

Theorem 5: The homomorphism Φ : SL2(C) → SO(1,3)
is defined through the following equivalent group actions:

g(t)ẑ = ŵ (78)

for g(t) ∈ SO(1,3) whenever

g3(t)Zg
∗
3(t) =W (79)

for g3(t)∈ SL2(C) and where g∗3(t) is the conjugate transpose

of g3(t).

Proof. see [10] and [14]. Therefore, we can obtain the

solution g(t)∈ SO(1,3) by using this homomorphism defined

by equations (78) and (79). Then each column of SO(1,3)



is identified with:

g1(t)

(

1 0

0 1

)

g1
∗(t) =W1 → ŵ1

g1(t)

(

1 0

0 −1

)

g1
∗(t) =W2 → ŵ2

g1(t)

(

0 −i

i 0

)

g1
∗(t) =W3 → ŵ3

g1(t)

(

0 1

1 0

)

g1
∗(t) =W3 → ŵ4

(80)

where g(t) ∈ SO(1,3) is defined by:

g(t) =
(

ŵ1 ŵ2 ŵ3 ŵ4

)

(81)

This can be expressed explicitly but due to space constraints

cannot be written in its most complete form here. This

section has provided a method for integrating control systems

defined on the Lie group SO(1,3) where the controls are time-

dependent.

V. CONCLUSION

In this paper we formulate Riemannian, sub-Riemannian,

elastic and mechanical problems as constrained optimal

control problems, and lift them to their corresponding Hamil-

tonian vector fields through the Maximum Principle. We

specialize to a particular case and illustrate a method for

deriving explicit expressions, relating the extremal curves

l ∈ g∗ to the optimal solutions g(t) ∈ G for the semi-simple

Lie groups SO(4) and SO(1,3). This method uses the double

cover property of these Lie groups to decouple them into

lower dimensional systems. These lower dimensional sys-

tems are solved in terms of the extremals using a coordinate

representation and the systems dynamic constraints. The

solutions of the decoupled system are confined to elements

in the dual of the Lie algebra. Finally, the solutions to

the decoupled systems are projected back onto the original

systems to yield their optimal solutions.
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