Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Integrating Hamiltonian systems defined on the Lie groups SO(4) and SO(1,3)

Biggs, James D. and Holderbaum, William (2007) Integrating Hamiltonian systems defined on the Lie groups SO(4) and SO(1,3). In: The 45th European Control Conference (ECC '07), 2007-07-02 - 2007-07-05.

[img]
Preview
PDF (strathprints007895.pdf)
strathprints007895.pdf

Download (120kB) | Preview

Abstract

In this paper we study constrained optimal control problems on semi-simple Lie groups. These constrained optimal control problems include Riemannian, sub-Riemannian, elastic and mechanical problems. We begin by lifting these problems, through the Maximum Principle, to their associated Hamiltonian formalism. As the base manifold is a Lie group G the cotangent bundle is realized as the direct product of the dual of the Lie algebra and G. The solutions to these Hamiltonian vector fields are called extremal curves and the projections g(t) in G are the corresponding optimal solutions. The main contribution of this paper is a method for deriving explicit expressions relating the extremal curves to the optimal solutions g(t) in G for the special cases of the Lie groups SO(4) and SO(1;3). This method uses the double cover property of these Lie groups to decouple them into lower dimensional systems. These lower dimensional systems are then solved in terms of the extremals using a coordinate representation and the systems dynamic constraints. This illustrates that the optimal solutions g(t) in G are explicitly dependent on the extremal curves.