Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

The acid-catalysed rearrangements of 4,5-bis(2-thienylhydroxymethyl)-1,3-dithiole-2-thione

Serebryakov, I.M. and Skabara, P.J. and Perepichka, I.F. (1999) The acid-catalysed rearrangements of 4,5-bis(2-thienylhydroxymethyl)-1,3-dithiole-2-thione. Journal of the Chemical Society, Perkin Transactions 2, 1999 (7). pp. 1405-1410. ISSN 1472-779X

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Under strongly acidic conditions, the title compound 1 readily participates in several possible rearrangement pathways, affording a product distribution which is relative to the choice of solvent and acid catalyst. Thus, using chloroform or acetone as the solvents and HBr or HClO4 as the catalysts, compounds 2-4 have been isolated and fully characterised; in addition, compound 5 was identified in the reaction mixture and characterised by H-1 NMR spectroscopy. The reaction kinetics of the transformations have been studied by H-1 NMR spectroscopy, using deuterated chloroform or acetone as the NMR solvents. A key intermediate in the reaction mechanisms is the allylic carbocation 6, which rearranges to give the fused system 3; in the presence of bromide anions, the carbocation forms an ion-pair intermediate 7, leading to the formation of compounds 2, 4 and/or 5, depending on the solvent.