Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Continuous tuning and efficient intracavity second-harmonic generation in a semiconductor disk laser with an intracavity diamond heatspreader

MacLean, A.J. and Kemp, A. and Calvez, S. and Kim, J.Y. and Kim, T. and Dawson, M.D. and Burns, D. (2008) Continuous tuning and efficient intracavity second-harmonic generation in a semiconductor disk laser with an intracavity diamond heatspreader. IEEE Journal of Quantum Electronics, 44 (3). pp. 216-225. ISSN 0018-9197

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Using a wedged and antireflection-coated diamond heatspreader, a continuously tunable semiconductor disk laser with intracavity second-harmonic generation (SHG) is demonstrated. Output powers of > 600 mW tunable over 10 nm around 530 nm are obtained. Finite-element modeling shows that the use of a diamond heatspreader for thermal management - in contrast to substrate thinning approaches - permits power scaling across the 670-2300-nm range of these lasers. Using a green laser as an exemplar, this paper details the issues involved in translating this spectral coverage to the ultraviolet and visible via SHG. Polarization and wavelength selection are discussed and the adopted approaches presented. Almost 1 W of second-harmonic light at 530 nm is demonstrated, with an efficiency of 11% with respect to the incident pump power.