Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Continuous tuning and efficient intracavity second-harmonic generation in a semiconductor disk laser with an intracavity diamond heatspreader

MacLean, A.J. and Kemp, A. and Calvez, S. and Kim, J.Y. and Kim, T. and Dawson, M.D. and Burns, D. (2008) Continuous tuning and efficient intracavity second-harmonic generation in a semiconductor disk laser with an intracavity diamond heatspreader. IEEE Journal of Quantum Electronics, 44 (3). pp. 216-225. ISSN 0018-9197

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Using a wedged and antireflection-coated diamond heatspreader, a continuously tunable semiconductor disk laser with intracavity second-harmonic generation (SHG) is demonstrated. Output powers of > 600 mW tunable over 10 nm around 530 nm are obtained. Finite-element modeling shows that the use of a diamond heatspreader for thermal management - in contrast to substrate thinning approaches - permits power scaling across the 670-2300-nm range of these lasers. Using a green laser as an exemplar, this paper details the issues involved in translating this spectral coverage to the ultraviolet and visible via SHG. Polarization and wavelength selection are discussed and the adopted approaches presented. Almost 1 W of second-harmonic light at 530 nm is demonstrated, with an efficiency of 11% with respect to the incident pump power.