Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Etching and micro-optics fabrication in diamond using chlorine-based inductively-coupled plasma

Lee, C.L. and Gu, E. and Dawson, M.D. and Friel, I. and Scarsbrook, G. (2008) Etching and micro-optics fabrication in diamond using chlorine-based inductively-coupled plasma. Diamond and Related Materials, 17 (7-10). pp. 1292-1296. ISSN 0925-9635

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The effect of Inductively-Coupled Plasma (ICP) etching on diamond using chlorine-based plasma has been investigated. The diamond materials studied include type IIa natural diamond, High Pressure and High Temperature (HPHT) diamond and Chemical Vapour Deposition (CVD) diamond. It was found that argon and chlorine (Ar/Cl2) ICP plasma etching can improve the smoothness of the diamond surface. By using this method, a minimum root-mean-squared (rms) surface roughness of 0.19 nm has been achieved. To demonstrate optimized Ar/Cl2 plasma etching, diamond spherical micro-lenses and micro-trenches were fabricated. Compared to argon and oxygen (Ar/O2) plasma etching, Ar/Cl2 plasma etching has a low selectivity with respect to the photo-resist mask, which enables an accurate control over the dimensions of the microstructures fabricated. The surface quality and profiles of these micro-lenses and micro-trenches were characterized by atomic force microscopy (AFM) and were shown to be better than those fabricated by Ar/O2 ICP plasma.